量子(2+p)-自旋玻璃的大时间有效动力学β$函数

Vincent Lahoche, Dine Ousmane Samary, Parham Radpay
{"title":"量子(2+p)-自旋玻璃的大时间有效动力学β$函数","authors":"Vincent Lahoche, Dine Ousmane Samary, Parham Radpay","doi":"arxiv-2408.02602","DOIUrl":null,"url":null,"abstract":"This paper examines the quantum $(2+p)$-spin dynamics of a $N$-vector\n$\\textbf{x}\\in \\mathbb{R}^N$ through the lens of renormalization group (RG)\ntheory. The RG is based on a coarse-graining over the eigenvalues of\nmatrix-like disorder, viewed as an effective kinetic whose eigenvalue\ndistribution undergoes a deterministic law in the large $N$ limit. We focus our\ninvestigation on perturbation theory and vertex expansion for effective average\naction, which proves more amenable than standard nonperturbative approaches due\nto the distinct non-local temporal and replicative structures that emerge in\nthe effective interactions following disorder integration. Our work entails the\nformulation of rules to address these non-localities within the framework of\nperturbation theory, culminating in the derivation of one-loop\n$\\beta$-functions. Our explicit calculations focus on the cases $p=3$,\n$p=\\infty$, and additional analytic material is given in the appendix.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large time effective kinetics $β$-function for quantum (2+p)-spin glass\",\"authors\":\"Vincent Lahoche, Dine Ousmane Samary, Parham Radpay\",\"doi\":\"arxiv-2408.02602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the quantum $(2+p)$-spin dynamics of a $N$-vector\\n$\\\\textbf{x}\\\\in \\\\mathbb{R}^N$ through the lens of renormalization group (RG)\\ntheory. The RG is based on a coarse-graining over the eigenvalues of\\nmatrix-like disorder, viewed as an effective kinetic whose eigenvalue\\ndistribution undergoes a deterministic law in the large $N$ limit. We focus our\\ninvestigation on perturbation theory and vertex expansion for effective average\\naction, which proves more amenable than standard nonperturbative approaches due\\nto the distinct non-local temporal and replicative structures that emerge in\\nthe effective interactions following disorder integration. Our work entails the\\nformulation of rules to address these non-localities within the framework of\\nperturbation theory, culminating in the derivation of one-loop\\n$\\\\beta$-functions. Our explicit calculations focus on the cases $p=3$,\\n$p=\\\\infty$, and additional analytic material is given in the appendix.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过重正化群(RG)理论的视角,研究了N$矢量$textbf{x}\\mathbb{R}^N$中的量子$(2+p)$自旋动力学。重正化群理论基于对类似矩阵的无序特征值的粗粒度化,它被视为一种有效动力学,其特征值分布在大 $N$ 极限下经历了一个确定性规律。我们的研究重点是有效平均作用的扰动理论和顶点展开,这比标准的非扰动方法更适用于无序整合后有效相互作用中出现的独特非局部时间和复制结构。我们的工作需要在扰动理论的框架内制定规则来解决这些非局部性问题,最终推导出单环的(beta)函数。我们的显式计算集中于 $p=3$,$p=\infty$的情况,附录中给出了额外的分析材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large time effective kinetics $β$-function for quantum (2+p)-spin glass
This paper examines the quantum $(2+p)$-spin dynamics of a $N$-vector $\textbf{x}\in \mathbb{R}^N$ through the lens of renormalization group (RG) theory. The RG is based on a coarse-graining over the eigenvalues of matrix-like disorder, viewed as an effective kinetic whose eigenvalue distribution undergoes a deterministic law in the large $N$ limit. We focus our investigation on perturbation theory and vertex expansion for effective average action, which proves more amenable than standard nonperturbative approaches due to the distinct non-local temporal and replicative structures that emerge in the effective interactions following disorder integration. Our work entails the formulation of rules to address these non-localities within the framework of perturbation theory, culminating in the derivation of one-loop $\beta$-functions. Our explicit calculations focus on the cases $p=3$, $p=\infty$, and additional analytic material is given in the appendix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信