煤基活性炭原料太西无烟煤的定量表征与大分子结构模型构建

IF 0.8 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY
Shanxin Xiong, Fengyan Lv, Nana Yang, Yukun Zhang, Xueni Zhao, Juanjuan Liu, Yangbo Xu, Chenxu Wang, Xiaoqin Wang, Zhen Li, Jianwei Xu
{"title":"煤基活性炭原料太西无烟煤的定量表征与大分子结构模型构建","authors":"Shanxin Xiong,&nbsp;Fengyan Lv,&nbsp;Nana Yang,&nbsp;Yukun Zhang,&nbsp;Xueni Zhao,&nbsp;Juanjuan Liu,&nbsp;Yangbo Xu,&nbsp;Chenxu Wang,&nbsp;Xiaoqin Wang,&nbsp;Zhen Li,&nbsp;Jianwei Xu","doi":"10.3103/S0361521924700204","DOIUrl":null,"url":null,"abstract":"<p>In this article, we mainly completed the related research on the establishment of organic macromolecular structure model of Taixi anthracite as coal-based activated carbon precursor. The understanding of coal macromolecular structure is of great significance to clean and materialized utilization of coal. In this paper, the aromatic structure, aliphatic structure and heteroatomic structure of Taixi anthracite were characterized by <sup>13</sup>C-NMR, FTIR and XPS. The macromolecular structure of coal was modeled by linking polycyclic aromatic hydrocarbons through bridging bonds (–CH<sub>2</sub>–, –CH–) and attaching oxygen/nitrogen functional groups. The molecular formula was determined to be C<sub>222</sub>H<sub>119</sub>NO<sub>11</sub>. The <sup>13</sup>C-NMR simulation curve of the two-dimensional macromolecular model was in good agreement with the experimental curve. Through molecular mechanics (MM) and molecular dynamics (MD) optimization, the bond elastic energy (<i>E</i><sub>B</sub>) and Van der Waals energy (<i>E</i><sub>VAN</sub>) decrease greatly, which mainly lead to the acquisition of the three-dimensional energy minimum conformation. In addition, the density simulation result of 3D structural model with periodic boundary conditions is 1.37 g/cm<sup>3</sup>. This is close to the measured density, which confirm that the 3D structure is reasonable. The establishment of this model helps to further understand Taixi anthracite, which is beneficial to guide the preparation of activated carbon from Taixi anthracite.</p>","PeriodicalId":779,"journal":{"name":"Solid Fuel Chemistry","volume":"58 4","pages":"315 - 325"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Characterization and Macromolecular Structure Model Construction of Taixi Anthracite as Raw Material of Coal-Based Activated Carbon\",\"authors\":\"Shanxin Xiong,&nbsp;Fengyan Lv,&nbsp;Nana Yang,&nbsp;Yukun Zhang,&nbsp;Xueni Zhao,&nbsp;Juanjuan Liu,&nbsp;Yangbo Xu,&nbsp;Chenxu Wang,&nbsp;Xiaoqin Wang,&nbsp;Zhen Li,&nbsp;Jianwei Xu\",\"doi\":\"10.3103/S0361521924700204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we mainly completed the related research on the establishment of organic macromolecular structure model of Taixi anthracite as coal-based activated carbon precursor. The understanding of coal macromolecular structure is of great significance to clean and materialized utilization of coal. In this paper, the aromatic structure, aliphatic structure and heteroatomic structure of Taixi anthracite were characterized by <sup>13</sup>C-NMR, FTIR and XPS. The macromolecular structure of coal was modeled by linking polycyclic aromatic hydrocarbons through bridging bonds (–CH<sub>2</sub>–, –CH–) and attaching oxygen/nitrogen functional groups. The molecular formula was determined to be C<sub>222</sub>H<sub>119</sub>NO<sub>11</sub>. The <sup>13</sup>C-NMR simulation curve of the two-dimensional macromolecular model was in good agreement with the experimental curve. Through molecular mechanics (MM) and molecular dynamics (MD) optimization, the bond elastic energy (<i>E</i><sub>B</sub>) and Van der Waals energy (<i>E</i><sub>VAN</sub>) decrease greatly, which mainly lead to the acquisition of the three-dimensional energy minimum conformation. In addition, the density simulation result of 3D structural model with periodic boundary conditions is 1.37 g/cm<sup>3</sup>. This is close to the measured density, which confirm that the 3D structure is reasonable. The establishment of this model helps to further understand Taixi anthracite, which is beneficial to guide the preparation of activated carbon from Taixi anthracite.</p>\",\"PeriodicalId\":779,\"journal\":{\"name\":\"Solid Fuel Chemistry\",\"volume\":\"58 4\",\"pages\":\"315 - 325\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Fuel Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0361521924700204\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Fuel Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S0361521924700204","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文主要完成了太西无烟煤作为煤基活性炭前驱体的有机大分子结构模型建立的相关研究。了解煤的大分子结构对煤的清洁化、物化利用具有重要意义。本文利用 13C-NMR、FTIR 和 XPS 对太西无烟煤的芳香族结构、脂肪族结构和杂原子结构进行了表征。通过桥键(-CH2-、-CH-)连接多环芳烃,并附加氧/氮官能团,建立了煤的大分子结构模型。分子式被确定为 C222H119NO11。二维大分子模型的 13C-NMR 模拟曲线与实验曲线十分吻合。通过分子力学(MM)和分子动力学(MD)优化,键弹性能(EB)和范德华能(EVAN)大大降低,这主要导致了三维能量最小构象的获得。此外,在周期性边界条件下,三维结构模型的密度模拟结果为 1.37 g/cm3。这与实测密度接近,证实了三维结构的合理性。该模型的建立有助于进一步了解太西无烟煤,有利于指导太西无烟煤活性炭的制备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantitative Characterization and Macromolecular Structure Model Construction of Taixi Anthracite as Raw Material of Coal-Based Activated Carbon

Quantitative Characterization and Macromolecular Structure Model Construction of Taixi Anthracite as Raw Material of Coal-Based Activated Carbon

Quantitative Characterization and Macromolecular Structure Model Construction of Taixi Anthracite as Raw Material of Coal-Based Activated Carbon

In this article, we mainly completed the related research on the establishment of organic macromolecular structure model of Taixi anthracite as coal-based activated carbon precursor. The understanding of coal macromolecular structure is of great significance to clean and materialized utilization of coal. In this paper, the aromatic structure, aliphatic structure and heteroatomic structure of Taixi anthracite were characterized by 13C-NMR, FTIR and XPS. The macromolecular structure of coal was modeled by linking polycyclic aromatic hydrocarbons through bridging bonds (–CH2–, –CH–) and attaching oxygen/nitrogen functional groups. The molecular formula was determined to be C222H119NO11. The 13C-NMR simulation curve of the two-dimensional macromolecular model was in good agreement with the experimental curve. Through molecular mechanics (MM) and molecular dynamics (MD) optimization, the bond elastic energy (EB) and Van der Waals energy (EVAN) decrease greatly, which mainly lead to the acquisition of the three-dimensional energy minimum conformation. In addition, the density simulation result of 3D structural model with periodic boundary conditions is 1.37 g/cm3. This is close to the measured density, which confirm that the 3D structure is reasonable. The establishment of this model helps to further understand Taixi anthracite, which is beneficial to guide the preparation of activated carbon from Taixi anthracite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid Fuel Chemistry
Solid Fuel Chemistry CHEMISTRY, MULTIDISCIPLINARY-ENERGY & FUELS
CiteScore
1.10
自引率
28.60%
发文量
52
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and applied articles on the chemistry and physics of solid fuels and carbonaceous materials. It addresses the composition, structure, and properties of solid fuels. The aim of the published articles is to demonstrate how novel discoveries, developments, and theories may be used in improved analysis and design of new types of fuels, chemicals, and by-products. The journal is particularly concerned with technological aspects of various chemical conversion processes and includes papers related to geochemistry, petrology and systematization of fossil fuels, their beneficiation and preparation for processing, the processes themselves, and the ultimate recovery of the liquid or gaseous end products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信