受限三体问题中作为拉普拉斯微扰理论结果的马修方程

Alexey Rosaev, Eva Plavalova
{"title":"受限三体问题中作为拉普拉斯微扰理论结果的马修方程","authors":"Alexey Rosaev, Eva Plavalova","doi":"arxiv-2408.04298","DOIUrl":null,"url":null,"abstract":"Linear equations with periodic coefficients describe the behavior of various\ndynamical systems. This studying is devoted to their applications to the\nplanetary restricted three-body problem (RTBP). Here we consider the Laplace\nmethod for determining perturbation in coordinates. We show that classical\ntheory of perturbation leads to a linear equation with periodic coefficients.\nThan we present a modification of Laplace method. This modification allows us\nto study motion over a longer time interval.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"192 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathieu equation as a result of Laplace perturbation theory in the restricted three body problem\",\"authors\":\"Alexey Rosaev, Eva Plavalova\",\"doi\":\"arxiv-2408.04298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear equations with periodic coefficients describe the behavior of various\\ndynamical systems. This studying is devoted to their applications to the\\nplanetary restricted three-body problem (RTBP). Here we consider the Laplace\\nmethod for determining perturbation in coordinates. We show that classical\\ntheory of perturbation leads to a linear equation with periodic coefficients.\\nThan we present a modification of Laplace method. This modification allows us\\nto study motion over a longer time interval.\",\"PeriodicalId\":501209,\"journal\":{\"name\":\"arXiv - PHYS - Earth and Planetary Astrophysics\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有周期性系数的线性方程描述了各种动力系统的行为。本研究致力于将其应用于行星受限三体问题(RTBP)。在此,我们考虑用拉普拉斯方法确定坐标中的扰动。我们证明了经典的扰动理论会导致一个具有周期性系数的线性方程。然后,我们介绍了拉普拉斯法的改进,这种改进允许我们研究更长时间跨度的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathieu equation as a result of Laplace perturbation theory in the restricted three body problem
Linear equations with periodic coefficients describe the behavior of various dynamical systems. This studying is devoted to their applications to the planetary restricted three-body problem (RTBP). Here we consider the Laplace method for determining perturbation in coordinates. We show that classical theory of perturbation leads to a linear equation with periodic coefficients. Than we present a modification of Laplace method. This modification allows us to study motion over a longer time interval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信