受限三体问题中周期轨道的生成设计

Alvaro Francisco Gil, Walther Litteri, Victor Rodriguez-Fernandez, David Camacho, Massimiliano Vasile
{"title":"受限三体问题中周期轨道的生成设计","authors":"Alvaro Francisco Gil, Walther Litteri, Victor Rodriguez-Fernandez, David Camacho, Massimiliano Vasile","doi":"arxiv-2408.03691","DOIUrl":null,"url":null,"abstract":"The Three-Body Problem has fascinated scientists for centuries and it has\nbeen crucial in the design of modern space missions. Recent developments in\nGenerative Artificial Intelligence hold transformative promise for addressing\nthis longstanding problem. This work investigates the use of Variational\nAutoencoder (VAE) and its internal representation to generate periodic orbits.\nWe utilize a comprehensive dataset of periodic orbits in the Circular\nRestricted Three-Body Problem (CR3BP) to train deep-learning architectures that\ncapture key orbital characteristics, and we set up physical evaluation metrics\nfor the generated trajectories. Through this investigation, we seek to enhance\nthe understanding of how Generative AI can improve space mission planning and\nastrodynamics research, leading to novel, data-driven approaches in the field.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Design of Periodic Orbits in the Restricted Three-Body Problem\",\"authors\":\"Alvaro Francisco Gil, Walther Litteri, Victor Rodriguez-Fernandez, David Camacho, Massimiliano Vasile\",\"doi\":\"arxiv-2408.03691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Three-Body Problem has fascinated scientists for centuries and it has\\nbeen crucial in the design of modern space missions. Recent developments in\\nGenerative Artificial Intelligence hold transformative promise for addressing\\nthis longstanding problem. This work investigates the use of Variational\\nAutoencoder (VAE) and its internal representation to generate periodic orbits.\\nWe utilize a comprehensive dataset of periodic orbits in the Circular\\nRestricted Three-Body Problem (CR3BP) to train deep-learning architectures that\\ncapture key orbital characteristics, and we set up physical evaluation metrics\\nfor the generated trajectories. Through this investigation, we seek to enhance\\nthe understanding of how Generative AI can improve space mission planning and\\nastrodynamics research, leading to novel, data-driven approaches in the field.\",\"PeriodicalId\":501209,\"journal\":{\"name\":\"arXiv - PHYS - Earth and Planetary Astrophysics\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几个世纪以来,三体问题一直令科学家们着迷,它对现代太空任务的设计至关重要。生成人工智能的最新发展为解决这一长期存在的问题带来了变革性的希望。我们利用环形受限三体问题(CR3BP)中周期轨道的综合数据集来训练捕捉关键轨道特征的深度学习架构,并为生成的轨迹设定了物理评估指标。通过这项研究,我们试图加深对生成式人工智能如何改进太空任务规划和天体动力学研究的理解,从而在该领域开发出数据驱动的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Design of Periodic Orbits in the Restricted Three-Body Problem
The Three-Body Problem has fascinated scientists for centuries and it has been crucial in the design of modern space missions. Recent developments in Generative Artificial Intelligence hold transformative promise for addressing this longstanding problem. This work investigates the use of Variational Autoencoder (VAE) and its internal representation to generate periodic orbits. We utilize a comprehensive dataset of periodic orbits in the Circular Restricted Three-Body Problem (CR3BP) to train deep-learning architectures that capture key orbital characteristics, and we set up physical evaluation metrics for the generated trajectories. Through this investigation, we seek to enhance the understanding of how Generative AI can improve space mission planning and astrodynamics research, leading to novel, data-driven approaches in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信