使用随机森林预测空气质量:安曼-扎尔卡案例研究

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Farah Alzu’bi , Abdulla Al-Rawabdeh , Ali Almagbile
{"title":"使用随机森林预测空气质量:安曼-扎尔卡案例研究","authors":"Farah Alzu’bi ,&nbsp;Abdulla Al-Rawabdeh ,&nbsp;Ali Almagbile","doi":"10.1016/j.ejrs.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>The Spatiotemporal variability of air quality is influenced by various factors over time. The objectives of this research are to create prediction models for Carbon monoxide (<em>CO</em>) and Nitrogen dioxide (<em>NO<sub>2</sub></em>) and determine the factors which that most impact <em>CO</em> and <em>NO<sub>2</sub></em> monthly using Random Forest Prediction. The methodology relies on Random Forest Prediction to predict air quality monthly in 2021, incorporating eight variables land surface temperature (<em>LST</em>), normalized<!--> <!-->difference<!--> <!-->built-up<!--> <!-->index (<em>NDBI</em>), built-up index (<em>BU</em> index), normalized difference<!--> <!-->vegetation index (<em>NDVI</em>), digital elevation model (<em>DEM</em>), relative humidity (<em>RH</em>), wind speed (<em>WS</em>), and wind direction (<em>WD</em>). The results indicate that <em>RH</em>, elevation, <em>WD</em>, and <em>LST</em> are the most significant factors influencing <em>CO</em> concentrations, representing 33%, 24%, 12%, and 10% respectively at annual level in 2021. Similarly, <em>WD, WS, RH</em>, elevation and <em>LST</em> are the most importance factors impacting <em>NO<sub>2</sub></em> concentrations, representing 24%, 21%, 18%, 12%, and 10% respectively at an annual level in 2021. Furthermore, <em>NDBI</em> and <em>BU</em> index had the lowest impact in on both <em>CO</em> and <em>NO<sub>2</sub></em>, with <em>BU</em> index showing a slightly higher percentage in <em>NO<sub>2</sub></em> models compared to <em>CO</em> models. Regarding cross-validation, the <em>MAE</em> values in <em>CO</em> models range from 0.11 to 0.18, and the <em>RMSE</em> values range from 0.14 to 0.23. Additionally, the <em>MAE</em> values in <em>NO<sub>2</sub></em> models ranges from 3.78 to 7.30, and <em>RMSE</em> values range from 4.93 to 9.23.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000565/pdfft?md5=b33e6f7b591e73da5d0849d9d150ff47&pid=1-s2.0-S1110982324000565-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting air quality using random forest: A case study in Amman-Zarqa\",\"authors\":\"Farah Alzu’bi ,&nbsp;Abdulla Al-Rawabdeh ,&nbsp;Ali Almagbile\",\"doi\":\"10.1016/j.ejrs.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Spatiotemporal variability of air quality is influenced by various factors over time. The objectives of this research are to create prediction models for Carbon monoxide (<em>CO</em>) and Nitrogen dioxide (<em>NO<sub>2</sub></em>) and determine the factors which that most impact <em>CO</em> and <em>NO<sub>2</sub></em> monthly using Random Forest Prediction. The methodology relies on Random Forest Prediction to predict air quality monthly in 2021, incorporating eight variables land surface temperature (<em>LST</em>), normalized<!--> <!-->difference<!--> <!-->built-up<!--> <!-->index (<em>NDBI</em>), built-up index (<em>BU</em> index), normalized difference<!--> <!-->vegetation index (<em>NDVI</em>), digital elevation model (<em>DEM</em>), relative humidity (<em>RH</em>), wind speed (<em>WS</em>), and wind direction (<em>WD</em>). The results indicate that <em>RH</em>, elevation, <em>WD</em>, and <em>LST</em> are the most significant factors influencing <em>CO</em> concentrations, representing 33%, 24%, 12%, and 10% respectively at annual level in 2021. Similarly, <em>WD, WS, RH</em>, elevation and <em>LST</em> are the most importance factors impacting <em>NO<sub>2</sub></em> concentrations, representing 24%, 21%, 18%, 12%, and 10% respectively at an annual level in 2021. Furthermore, <em>NDBI</em> and <em>BU</em> index had the lowest impact in on both <em>CO</em> and <em>NO<sub>2</sub></em>, with <em>BU</em> index showing a slightly higher percentage in <em>NO<sub>2</sub></em> models compared to <em>CO</em> models. Regarding cross-validation, the <em>MAE</em> values in <em>CO</em> models range from 0.11 to 0.18, and the <em>RMSE</em> values range from 0.14 to 0.23. Additionally, the <em>MAE</em> values in <em>NO<sub>2</sub></em> models ranges from 3.78 to 7.30, and <em>RMSE</em> values range from 4.93 to 9.23.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000565/pdfft?md5=b33e6f7b591e73da5d0849d9d150ff47&pid=1-s2.0-S1110982324000565-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000565\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000565","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

空气质量的时空变化受各种因素的影响。本研究的目标是创建一氧化碳()和二氧化氮()的预测模型,并利用随机森林预测法确定对每月空气质量影响最大的因素。该方法依靠随机森林预测来预测 2021 年每月的空气质量,其中包含八个变量:地表温度()、归一化差异建筑指数()、建筑指数()、归一化差异植被指数()、数字高程模型()、相对湿度()、风速()和风向()。结果表明,海拔、、和是影响浓度最显著的因素,在 2021 年的年度水平上分别占 33%、24%、12% 和 10%。同样,在 2021 年,海拔高度、和是影响浓度最重要的因素,分别占全年水平的 24%、21%、18%、12% 和 10%。此外,和指数对模型的影响最小,指数在模型中的比例略高于模型。在交叉验证方面,模型中的值在 0.11 到 0.18 之间,而指数中的值在 0.14 到 0.23 之间。此外,模型中的数值范围为 3.78 至 7.30,数值范围为 4.93 至 9.23。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting air quality using random forest: A case study in Amman-Zarqa

The Spatiotemporal variability of air quality is influenced by various factors over time. The objectives of this research are to create prediction models for Carbon monoxide (CO) and Nitrogen dioxide (NO2) and determine the factors which that most impact CO and NO2 monthly using Random Forest Prediction. The methodology relies on Random Forest Prediction to predict air quality monthly in 2021, incorporating eight variables land surface temperature (LST), normalized difference built-up index (NDBI), built-up index (BU index), normalized difference vegetation index (NDVI), digital elevation model (DEM), relative humidity (RH), wind speed (WS), and wind direction (WD). The results indicate that RH, elevation, WD, and LST are the most significant factors influencing CO concentrations, representing 33%, 24%, 12%, and 10% respectively at annual level in 2021. Similarly, WD, WS, RH, elevation and LST are the most importance factors impacting NO2 concentrations, representing 24%, 21%, 18%, 12%, and 10% respectively at an annual level in 2021. Furthermore, NDBI and BU index had the lowest impact in on both CO and NO2, with BU index showing a slightly higher percentage in NO2 models compared to CO models. Regarding cross-validation, the MAE values in CO models range from 0.11 to 0.18, and the RMSE values range from 0.14 to 0.23. Additionally, the MAE values in NO2 models ranges from 3.78 to 7.30, and RMSE values range from 4.93 to 9.23.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信