Farah Alzu’bi , Abdulla Al-Rawabdeh , Ali Almagbile
{"title":"使用随机森林预测空气质量:安曼-扎尔卡案例研究","authors":"Farah Alzu’bi , Abdulla Al-Rawabdeh , Ali Almagbile","doi":"10.1016/j.ejrs.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>The Spatiotemporal variability of air quality is influenced by various factors over time. The objectives of this research are to create prediction models for Carbon monoxide (<em>CO</em>) and Nitrogen dioxide (<em>NO<sub>2</sub></em>) and determine the factors which that most impact <em>CO</em> and <em>NO<sub>2</sub></em> monthly using Random Forest Prediction. The methodology relies on Random Forest Prediction to predict air quality monthly in 2021, incorporating eight variables land surface temperature (<em>LST</em>), normalized<!--> <!-->difference<!--> <!-->built-up<!--> <!-->index (<em>NDBI</em>), built-up index (<em>BU</em> index), normalized difference<!--> <!-->vegetation index (<em>NDVI</em>), digital elevation model (<em>DEM</em>), relative humidity (<em>RH</em>), wind speed (<em>WS</em>), and wind direction (<em>WD</em>). The results indicate that <em>RH</em>, elevation, <em>WD</em>, and <em>LST</em> are the most significant factors influencing <em>CO</em> concentrations, representing 33%, 24%, 12%, and 10% respectively at annual level in 2021. Similarly, <em>WD, WS, RH</em>, elevation and <em>LST</em> are the most importance factors impacting <em>NO<sub>2</sub></em> concentrations, representing 24%, 21%, 18%, 12%, and 10% respectively at an annual level in 2021. Furthermore, <em>NDBI</em> and <em>BU</em> index had the lowest impact in on both <em>CO</em> and <em>NO<sub>2</sub></em>, with <em>BU</em> index showing a slightly higher percentage in <em>NO<sub>2</sub></em> models compared to <em>CO</em> models. Regarding cross-validation, the <em>MAE</em> values in <em>CO</em> models range from 0.11 to 0.18, and the <em>RMSE</em> values range from 0.14 to 0.23. Additionally, the <em>MAE</em> values in <em>NO<sub>2</sub></em> models ranges from 3.78 to 7.30, and <em>RMSE</em> values range from 4.93 to 9.23.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000565/pdfft?md5=b33e6f7b591e73da5d0849d9d150ff47&pid=1-s2.0-S1110982324000565-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting air quality using random forest: A case study in Amman-Zarqa\",\"authors\":\"Farah Alzu’bi , Abdulla Al-Rawabdeh , Ali Almagbile\",\"doi\":\"10.1016/j.ejrs.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Spatiotemporal variability of air quality is influenced by various factors over time. The objectives of this research are to create prediction models for Carbon monoxide (<em>CO</em>) and Nitrogen dioxide (<em>NO<sub>2</sub></em>) and determine the factors which that most impact <em>CO</em> and <em>NO<sub>2</sub></em> monthly using Random Forest Prediction. The methodology relies on Random Forest Prediction to predict air quality monthly in 2021, incorporating eight variables land surface temperature (<em>LST</em>), normalized<!--> <!-->difference<!--> <!-->built-up<!--> <!-->index (<em>NDBI</em>), built-up index (<em>BU</em> index), normalized difference<!--> <!-->vegetation index (<em>NDVI</em>), digital elevation model (<em>DEM</em>), relative humidity (<em>RH</em>), wind speed (<em>WS</em>), and wind direction (<em>WD</em>). The results indicate that <em>RH</em>, elevation, <em>WD</em>, and <em>LST</em> are the most significant factors influencing <em>CO</em> concentrations, representing 33%, 24%, 12%, and 10% respectively at annual level in 2021. Similarly, <em>WD, WS, RH</em>, elevation and <em>LST</em> are the most importance factors impacting <em>NO<sub>2</sub></em> concentrations, representing 24%, 21%, 18%, 12%, and 10% respectively at an annual level in 2021. Furthermore, <em>NDBI</em> and <em>BU</em> index had the lowest impact in on both <em>CO</em> and <em>NO<sub>2</sub></em>, with <em>BU</em> index showing a slightly higher percentage in <em>NO<sub>2</sub></em> models compared to <em>CO</em> models. Regarding cross-validation, the <em>MAE</em> values in <em>CO</em> models range from 0.11 to 0.18, and the <em>RMSE</em> values range from 0.14 to 0.23. Additionally, the <em>MAE</em> values in <em>NO<sub>2</sub></em> models ranges from 3.78 to 7.30, and <em>RMSE</em> values range from 4.93 to 9.23.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000565/pdfft?md5=b33e6f7b591e73da5d0849d9d150ff47&pid=1-s2.0-S1110982324000565-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000565\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000565","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Predicting air quality using random forest: A case study in Amman-Zarqa
The Spatiotemporal variability of air quality is influenced by various factors over time. The objectives of this research are to create prediction models for Carbon monoxide (CO) and Nitrogen dioxide (NO2) and determine the factors which that most impact CO and NO2 monthly using Random Forest Prediction. The methodology relies on Random Forest Prediction to predict air quality monthly in 2021, incorporating eight variables land surface temperature (LST), normalized difference built-up index (NDBI), built-up index (BU index), normalized difference vegetation index (NDVI), digital elevation model (DEM), relative humidity (RH), wind speed (WS), and wind direction (WD). The results indicate that RH, elevation, WD, and LST are the most significant factors influencing CO concentrations, representing 33%, 24%, 12%, and 10% respectively at annual level in 2021. Similarly, WD, WS, RH, elevation and LST are the most importance factors impacting NO2 concentrations, representing 24%, 21%, 18%, 12%, and 10% respectively at an annual level in 2021. Furthermore, NDBI and BU index had the lowest impact in on both CO and NO2, with BU index showing a slightly higher percentage in NO2 models compared to CO models. Regarding cross-validation, the MAE values in CO models range from 0.11 to 0.18, and the RMSE values range from 0.14 to 0.23. Additionally, the MAE values in NO2 models ranges from 3.78 to 7.30, and RMSE values range from 4.93 to 9.23.