霍奇型志村变的列夫谢茨数公式

IF 0.5 4区 数学 Q3 MATHEMATICS
Dong Uk Lee
{"title":"霍奇型志村变的列夫谢茨数公式","authors":"Dong Uk Lee","doi":"10.4310/ajm.2024.v28.n1.a5","DOIUrl":null,"url":null,"abstract":"For any Shimura variety of Hodge type with hyperspecial level at a prime $p$ and automorphic lisse sheaf on it, we prove a formula, conjectured by Kottwitz [Kot90], for the Lefschetz numbers of Frobenius-twisted Hecke correspondences acting on the compactly supported étale cohomology. Our proof is an adaptation of the arguments of Langlands and Rapoport [LR87] of deriving the Kottwitz’s formula from their conjectural description of the set of mod-$p$ points of Shimura variety (Langlands–Rapoport conjecture), but replaces their Galois gerb theoretic arguments by more standard group-theoretic ones, using Kisin’s geometric work [Kis17]. We also prove a generalization of Honda–Tate theorem in the context of Shimura varieties and fix an error in the Kisin’s work. We do not assume that the derived group is simply connected.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lefschetz number formula for Shimura varieties of Hodge type\",\"authors\":\"Dong Uk Lee\",\"doi\":\"10.4310/ajm.2024.v28.n1.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any Shimura variety of Hodge type with hyperspecial level at a prime $p$ and automorphic lisse sheaf on it, we prove a formula, conjectured by Kottwitz [Kot90], for the Lefschetz numbers of Frobenius-twisted Hecke correspondences acting on the compactly supported étale cohomology. Our proof is an adaptation of the arguments of Langlands and Rapoport [LR87] of deriving the Kottwitz’s formula from their conjectural description of the set of mod-$p$ points of Shimura variety (Langlands–Rapoport conjecture), but replaces their Galois gerb theoretic arguments by more standard group-theoretic ones, using Kisin’s geometric work [Kis17]. We also prove a generalization of Honda–Tate theorem in the context of Shimura varieties and fix an error in the Kisin’s work. We do not assume that the derived group is simply connected.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2024.v28.n1.a5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2024.v28.n1.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任何在素数$p$处有超特级的霍奇型志村综和其上的自形利塞剪子,我们证明了科特维茨[Kot90]猜想的一个公式,即作用于紧凑支撑的埃塔尔同调的弗罗贝纽斯扭曲赫克对应的勒夫谢茨数。我们的证明改编自朗兰兹和拉波波特[LR87]的论证,即从他们对志村变的 mod-$p$ 点集合的猜想描述(朗兰兹-拉波波特猜想)中推导出科特维茨公式,但用更标准的群论论证取代了他们的伽罗瓦格布论论证,并使用了基辛的几何工作[Kis17]。我们还在志村变中证明了本田-塔特定理的一般化,并修正了基辛工作中的一个错误。我们不假定派生群是简单相连的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lefschetz number formula for Shimura varieties of Hodge type
For any Shimura variety of Hodge type with hyperspecial level at a prime $p$ and automorphic lisse sheaf on it, we prove a formula, conjectured by Kottwitz [Kot90], for the Lefschetz numbers of Frobenius-twisted Hecke correspondences acting on the compactly supported étale cohomology. Our proof is an adaptation of the arguments of Langlands and Rapoport [LR87] of deriving the Kottwitz’s formula from their conjectural description of the set of mod-$p$ points of Shimura variety (Langlands–Rapoport conjecture), but replaces their Galois gerb theoretic arguments by more standard group-theoretic ones, using Kisin’s geometric work [Kis17]. We also prove a generalization of Honda–Tate theorem in the context of Shimura varieties and fix an error in the Kisin’s work. We do not assume that the derived group is simply connected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信