霍奇模量代数和奇点的完整不变式

IF 0.5 4区 数学 Q3 MATHEMATICS
Guorui Ma, Yang Wang, Stephen S.-T. Yau, Huaiqing Zuo
{"title":"霍奇模量代数和奇点的完整不变式","authors":"Guorui Ma, Yang Wang, Stephen S.-T. Yau, Huaiqing Zuo","doi":"10.4310/ajm.2024.v28.n1.a1","DOIUrl":null,"url":null,"abstract":"We introduce the Hodge moduli algebras and Hodge moduli sequence associated with an isolated hypersurface singularity. These are new subtle invariants of singularities. We propose several characterization conjectures by using of these invariants. We investigate structural properties and numerical invariants of Hodge ideals naturally associated with isolated hypersurface singularities.In particular, we establish that the analytic isomorphisms class of an isolated two dimensional rational hypersurface singularities is determined by the Hodge moduli algebras and Hodge moduli sequence. As a result, we prove that Hodge moduli algebra together with the geometric genus give complete characterization of such singularities. In the proof, we concretely compute the Hodge ideals and the associated Hodge moduli algebras of these singularities.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":"14 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hodge moduli algebras and complete invariants of singularities\",\"authors\":\"Guorui Ma, Yang Wang, Stephen S.-T. Yau, Huaiqing Zuo\",\"doi\":\"10.4310/ajm.2024.v28.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the Hodge moduli algebras and Hodge moduli sequence associated with an isolated hypersurface singularity. These are new subtle invariants of singularities. We propose several characterization conjectures by using of these invariants. We investigate structural properties and numerical invariants of Hodge ideals naturally associated with isolated hypersurface singularities.In particular, we establish that the analytic isomorphisms class of an isolated two dimensional rational hypersurface singularities is determined by the Hodge moduli algebras and Hodge moduli sequence. As a result, we prove that Hodge moduli algebra together with the geometric genus give complete characterization of such singularities. In the proof, we concretely compute the Hodge ideals and the associated Hodge moduli algebras of these singularities.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2024.v28.n1.a1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2024.v28.n1.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了与孤立超曲面奇点相关的霍奇模量代数和霍奇模量序列。这些都是奇点的新的微妙不变式。我们利用这些不变式提出了几个特征猜想。我们研究了与孤立超曲面奇点自然相关的霍奇理想的结构性质和数值不变式。特别是,我们建立了孤立二维有理超曲面奇点的解析同构类是由霍奇模量代数和霍奇模量序列决定的。因此,我们证明霍奇模量代数和几何属概念给出了这类奇点的完整特征。在证明过程中,我们具体计算了这些奇点的霍奇理想和相关的霍奇模量代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hodge moduli algebras and complete invariants of singularities
We introduce the Hodge moduli algebras and Hodge moduli sequence associated with an isolated hypersurface singularity. These are new subtle invariants of singularities. We propose several characterization conjectures by using of these invariants. We investigate structural properties and numerical invariants of Hodge ideals naturally associated with isolated hypersurface singularities.In particular, we establish that the analytic isomorphisms class of an isolated two dimensional rational hypersurface singularities is determined by the Hodge moduli algebras and Hodge moduli sequence. As a result, we prove that Hodge moduli algebra together with the geometric genus give complete characterization of such singularities. In the proof, we concretely compute the Hodge ideals and the associated Hodge moduli algebras of these singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信