生成点云时注意平均值域

Benno Käch, Isabell Melzer-Pellmann, Dirk Krücker
{"title":"生成点云时注意平均值域","authors":"Benno Käch, Isabell Melzer-Pellmann, Dirk Krücker","doi":"arxiv-2408.04997","DOIUrl":null,"url":null,"abstract":"Collider data generation with machine learning has become increasingly\npopular in particle physics due to the high computational cost of conventional\nMonte Carlo simulations, particularly for future high-luminosity colliders. We\npropose a generative model for point clouds that employs an attention-based\naggregation while preserving a linear computational complexity with respect to\nthe number of points. The model is trained in an adversarial setup, ensuring\ninput permutation equivariance and invariance for the generator and critic,\nrespectively. To stabilize known unstable adversarial training, a feature\nmatching loss is introduced. We evaluate the performance on two different\ndatasets. The former is the top-quark \\textsc{JetNet150} dataset, where the\nmodel outperforms the current state-of-the-art GAN-based model, despite having\nsignificantly fewer parameters. The latter is dataset 2 of the CaloChallenge,\nwhich comprises point clouds with up to $30\\times$ more points compared to the\nfirst dataset. The model and its corresponding code are available at\n\\url{https://github.com/kaechb/MDMA/tree/NeurIPS}.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pay Attention To Mean Fields For Point Cloud Generation\",\"authors\":\"Benno Käch, Isabell Melzer-Pellmann, Dirk Krücker\",\"doi\":\"arxiv-2408.04997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collider data generation with machine learning has become increasingly\\npopular in particle physics due to the high computational cost of conventional\\nMonte Carlo simulations, particularly for future high-luminosity colliders. We\\npropose a generative model for point clouds that employs an attention-based\\naggregation while preserving a linear computational complexity with respect to\\nthe number of points. The model is trained in an adversarial setup, ensuring\\ninput permutation equivariance and invariance for the generator and critic,\\nrespectively. To stabilize known unstable adversarial training, a feature\\nmatching loss is introduced. We evaluate the performance on two different\\ndatasets. The former is the top-quark \\\\textsc{JetNet150} dataset, where the\\nmodel outperforms the current state-of-the-art GAN-based model, despite having\\nsignificantly fewer parameters. The latter is dataset 2 of the CaloChallenge,\\nwhich comprises point clouds with up to $30\\\\times$ more points compared to the\\nfirst dataset. The model and its corresponding code are available at\\n\\\\url{https://github.com/kaechb/MDMA/tree/NeurIPS}.\",\"PeriodicalId\":501181,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于传统的蒙特卡洛模拟计算成本高昂,特别是对于未来的高亮度对撞机,利用机器学习生成对撞机数据在粒子物理学中越来越受欢迎。我们提出了一种点云生成模型,它采用了基于注意力的聚合,同时保持了与点数有关的线性计算复杂性。该模型在对抗设置中进行训练,分别确保生成器和批判者的输入包络相等性和不变性。为了稳定已知的不稳定对抗训练,我们引入了特征匹配损失。我们对两个不同数据集的性能进行了评估。前者是顶夸克文本集(top-quark textsc{JetNet150} dataset),在该数据集上,尽管模型的参数明显较少,但其性能却优于目前最先进的基于 GAN 的模型。后者是 CaloChallenge 的数据集 2,与第一个数据集相比,该数据集包含的点云多达 30 倍。该模型及其相应代码可在以下网址获取:url{https://github.com/kaechb/MDMA/tree/NeurIPS}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pay Attention To Mean Fields For Point Cloud Generation
Collider data generation with machine learning has become increasingly popular in particle physics due to the high computational cost of conventional Monte Carlo simulations, particularly for future high-luminosity colliders. We propose a generative model for point clouds that employs an attention-based aggregation while preserving a linear computational complexity with respect to the number of points. The model is trained in an adversarial setup, ensuring input permutation equivariance and invariance for the generator and critic, respectively. To stabilize known unstable adversarial training, a feature matching loss is introduced. We evaluate the performance on two different datasets. The former is the top-quark \textsc{JetNet150} dataset, where the model outperforms the current state-of-the-art GAN-based model, despite having significantly fewer parameters. The latter is dataset 2 of the CaloChallenge, which comprises point clouds with up to $30\times$ more points compared to the first dataset. The model and its corresponding code are available at \url{https://github.com/kaechb/MDMA/tree/NeurIPS}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信