环绕圆柱体甩流的混合势流模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vijay Matheswaran, L. Scott Miller
{"title":"环绕圆柱体甩流的混合势流模型","authors":"Vijay Matheswaran, L. Scott Miller","doi":"10.1007/s10665-024-10386-8","DOIUrl":null,"url":null,"abstract":"<p>A Hybrid Potential Flow (HPF) model for flow around a circular cylinder in the subcritical Reynolds number range (<span>\\(300 \\le Re \\le 3\\times 10^5\\)</span>) is developed using a combination of elementary flow solutions and empirical data. By joining this developed near-body solution with von Karman’s model for the vortex wake, a complete solution for flow around a circular cylinder is calculated. Results for oscillatory forces, including the transverse lift force, due to vortex shedding as well as shedding frequencies are then calculated and presented. With the complete solution for flow around a cylinder calculated, the HPF model can be used as a step to calculate the flow around other bluff bodies using conformal mapping, an approach that has been developed and presented by the authors in a related paper.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid potential flow model for shedding flow around a circular cylinder\",\"authors\":\"Vijay Matheswaran, L. Scott Miller\",\"doi\":\"10.1007/s10665-024-10386-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Hybrid Potential Flow (HPF) model for flow around a circular cylinder in the subcritical Reynolds number range (<span>\\\\(300 \\\\le Re \\\\le 3\\\\times 10^5\\\\)</span>) is developed using a combination of elementary flow solutions and empirical data. By joining this developed near-body solution with von Karman’s model for the vortex wake, a complete solution for flow around a circular cylinder is calculated. Results for oscillatory forces, including the transverse lift force, due to vortex shedding as well as shedding frequencies are then calculated and presented. With the complete solution for flow around a cylinder calculated, the HPF model can be used as a step to calculate the flow around other bluff bodies using conformal mapping, an approach that has been developed and presented by the authors in a related paper.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10386-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10386-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

结合基本流动解法和经验数据,建立了亚临界雷诺数范围内((300\le Re \le 3\times 10^5\))环绕圆柱体流动的混合势能流(HPF)模型。通过将所开发的近体解法与 von Karman 的涡流尾流模型相结合,计算出了环绕圆柱体流动的完整解法。然后计算并给出了涡流脱落引起的振荡力(包括横向升力)以及脱落频率的结果。在计算出圆柱体周围流动的完整解决方案后,HPF 模型可作为一个步骤,利用保角映射计算其他崖体周围的流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A hybrid potential flow model for shedding flow around a circular cylinder

A hybrid potential flow model for shedding flow around a circular cylinder

A Hybrid Potential Flow (HPF) model for flow around a circular cylinder in the subcritical Reynolds number range (\(300 \le Re \le 3\times 10^5\)) is developed using a combination of elementary flow solutions and empirical data. By joining this developed near-body solution with von Karman’s model for the vortex wake, a complete solution for flow around a circular cylinder is calculated. Results for oscillatory forces, including the transverse lift force, due to vortex shedding as well as shedding frequencies are then calculated and presented. With the complete solution for flow around a cylinder calculated, the HPF model can be used as a step to calculate the flow around other bluff bodies using conformal mapping, an approach that has been developed and presented by the authors in a related paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信