Ulises Jaime-Yepez, Hongyun Wang, Shannon E. Foley, Hong Zhou
{"title":"横向热传导皮肤组织电磁加热的渐近解法","authors":"Ulises Jaime-Yepez, Hongyun Wang, Shannon E. Foley, Hong Zhou","doi":"10.1007/s10665-024-10390-y","DOIUrl":null,"url":null,"abstract":"<p>We study the temperature evolution in the three-dimensional skin tissue exposed to an electromagnetic beam of millimeter wavelength. The skin absorption coefficient of the beam frequency determines how deep the electromagnetic energy penetrates into the skin tissue, which gives a sub-millimeter penetration depth for a 94 GHz wave. In contrast, in the lateral directions perpendicular to the depth, the beam size is usually much larger than the penetration depth. Based on this separation of length scales, we establish an asymptotic formulation in which each term has separable dependences on the depth coordinate and on the lateral coordinates. We solve it analytically to obtain a two-term asymptotic solution of the temperature distribution in the three-dimensional skin tissue. This closed-form analytical solution provides a practical and accurate way of predicting the temperature. When the beam size is moderately larger than the penetration depth (a ratio of 20), the effect of lateral heat conduction is well captured in the asymptotic solution with maximum error less than 0.0017 in the normalized temperature of magnitude well above 1.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic solution of electromagnetic heating of skin tissue with lateral heat conduction\",\"authors\":\"Ulises Jaime-Yepez, Hongyun Wang, Shannon E. Foley, Hong Zhou\",\"doi\":\"10.1007/s10665-024-10390-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the temperature evolution in the three-dimensional skin tissue exposed to an electromagnetic beam of millimeter wavelength. The skin absorption coefficient of the beam frequency determines how deep the electromagnetic energy penetrates into the skin tissue, which gives a sub-millimeter penetration depth for a 94 GHz wave. In contrast, in the lateral directions perpendicular to the depth, the beam size is usually much larger than the penetration depth. Based on this separation of length scales, we establish an asymptotic formulation in which each term has separable dependences on the depth coordinate and on the lateral coordinates. We solve it analytically to obtain a two-term asymptotic solution of the temperature distribution in the three-dimensional skin tissue. This closed-form analytical solution provides a practical and accurate way of predicting the temperature. When the beam size is moderately larger than the penetration depth (a ratio of 20), the effect of lateral heat conduction is well captured in the asymptotic solution with maximum error less than 0.0017 in the normalized temperature of magnitude well above 1.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10390-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10390-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Asymptotic solution of electromagnetic heating of skin tissue with lateral heat conduction
We study the temperature evolution in the three-dimensional skin tissue exposed to an electromagnetic beam of millimeter wavelength. The skin absorption coefficient of the beam frequency determines how deep the electromagnetic energy penetrates into the skin tissue, which gives a sub-millimeter penetration depth for a 94 GHz wave. In contrast, in the lateral directions perpendicular to the depth, the beam size is usually much larger than the penetration depth. Based on this separation of length scales, we establish an asymptotic formulation in which each term has separable dependences on the depth coordinate and on the lateral coordinates. We solve it analytically to obtain a two-term asymptotic solution of the temperature distribution in the three-dimensional skin tissue. This closed-form analytical solution provides a practical and accurate way of predicting the temperature. When the beam size is moderately larger than the penetration depth (a ratio of 20), the effect of lateral heat conduction is well captured in the asymptotic solution with maximum error less than 0.0017 in the normalized temperature of magnitude well above 1.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.