具有吸引力里兹相互作用力的阻尼欧拉系统

IF 1.1 3区 数学 Q1 MATHEMATICS
Young-Pil Choi, Jinwook Jung, Yoonjung Lee
{"title":"具有吸引力里兹相互作用力的阻尼欧拉系统","authors":"Young-Pil Choi, Jinwook Jung, Yoonjung Lee","doi":"10.1007/s00028-024-00998-z","DOIUrl":null,"url":null,"abstract":"<p>We consider the barotropic Euler equations with pairwise attractive Riesz interactions and linear velocity damping in the periodic domain. We establish the global-in-time well-posedness theory for the system near an equilibrium state if the coefficient of the Riesz interaction term is small. We also analyze the large-time behavior of solutions showing the exponential rate of convergence toward the equilibrium state as time goes to infinity.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"192 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damped Euler system with attractive Riesz interaction forces\",\"authors\":\"Young-Pil Choi, Jinwook Jung, Yoonjung Lee\",\"doi\":\"10.1007/s00028-024-00998-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the barotropic Euler equations with pairwise attractive Riesz interactions and linear velocity damping in the periodic domain. We establish the global-in-time well-posedness theory for the system near an equilibrium state if the coefficient of the Riesz interaction term is small. We also analyze the large-time behavior of solutions showing the exponential rate of convergence toward the equilibrium state as time goes to infinity.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00998-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00998-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在周期域中具有成对吸引力 Riesz 相互作用和线性速度阻尼的气压欧拉方程。如果 Riesz 相互作用项的系数较小,我们将建立系统在平衡状态附近的全局-时间拟合理论。我们还分析了解的大时间行为,结果表明随着时间的无穷大,其向平衡态的收敛速度呈指数增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Damped Euler system with attractive Riesz interaction forces

We consider the barotropic Euler equations with pairwise attractive Riesz interactions and linear velocity damping in the periodic domain. We establish the global-in-time well-posedness theory for the system near an equilibrium state if the coefficient of the Riesz interaction term is small. We also analyze the large-time behavior of solutions showing the exponential rate of convergence toward the equilibrium state as time goes to infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信