{"title":"基于轻量级语义分割模型的路面表面裂缝实时检测","authors":"","doi":"10.1016/j.trgeo.2024.101335","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient and accurate pavement surface crack detection is crucial for analyzing pavement survey data. To achieve this goal, an improved lightweight semantic segmentation model based on BiSeNetv2, utilizing the detail branch, the semantic branch, and the guided aggregation module, is refined for automatic pavement surface crack detection. With the detail branch and the semantic branch, the low-level details and the high-level semantic context of pavement surface crack can be represented. Taking advantage of the guided aggregation module, the low-level and high-level crack features are mutually connected and fused. The gradient-weighted class activation mapping (Grad-CAM) is adopted to visualize the details of the evolution of crack feature extraction, fusion, and representation. Based on the evaluation results, the proposed lightweight model demonstrates its effectiveness and robustness in accurately segmenting pavement surface crack. Maximumly, it is 10.14% higher than the other model on F1 score, indicating its great potential for pavement crack detection.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time pavement surface crack detection based on lightweight semantic segmentation model\",\"authors\":\"\",\"doi\":\"10.1016/j.trgeo.2024.101335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient and accurate pavement surface crack detection is crucial for analyzing pavement survey data. To achieve this goal, an improved lightweight semantic segmentation model based on BiSeNetv2, utilizing the detail branch, the semantic branch, and the guided aggregation module, is refined for automatic pavement surface crack detection. With the detail branch and the semantic branch, the low-level details and the high-level semantic context of pavement surface crack can be represented. Taking advantage of the guided aggregation module, the low-level and high-level crack features are mutually connected and fused. The gradient-weighted class activation mapping (Grad-CAM) is adopted to visualize the details of the evolution of crack feature extraction, fusion, and representation. Based on the evaluation results, the proposed lightweight model demonstrates its effectiveness and robustness in accurately segmenting pavement surface crack. Maximumly, it is 10.14% higher than the other model on F1 score, indicating its great potential for pavement crack detection.</p></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391224001569\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001569","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
摘要
高效准确的路面表面裂缝检测对于分析路面勘测数据至关重要。为实现这一目标,本文基于 BiSeNetv2,利用细节分支、语义分支和引导聚合模块,改进了轻量级语义分割模型,用于路面裂缝的自动检测。通过细节分支和语义分支,可以表示路面表面裂缝的底层细节和高层语义背景。利用引导聚合模块的优势,将低层次和高层次的裂缝特征相互连接和融合。采用梯度加权类激活映射(Grad-CAM)可视化裂缝特征提取、融合和表示的演变细节。根据评估结果,所提出的轻量级模型在准确分割路面裂缝方面表现出了有效性和鲁棒性。在 F1 分数上,它比其他模型最高高出 10.14%,这表明它在路面裂缝检测方面具有巨大的潜力。
Real-time pavement surface crack detection based on lightweight semantic segmentation model
Efficient and accurate pavement surface crack detection is crucial for analyzing pavement survey data. To achieve this goal, an improved lightweight semantic segmentation model based on BiSeNetv2, utilizing the detail branch, the semantic branch, and the guided aggregation module, is refined for automatic pavement surface crack detection. With the detail branch and the semantic branch, the low-level details and the high-level semantic context of pavement surface crack can be represented. Taking advantage of the guided aggregation module, the low-level and high-level crack features are mutually connected and fused. The gradient-weighted class activation mapping (Grad-CAM) is adopted to visualize the details of the evolution of crack feature extraction, fusion, and representation. Based on the evaluation results, the proposed lightweight model demonstrates its effectiveness and robustness in accurately segmenting pavement surface crack. Maximumly, it is 10.14% higher than the other model on F1 score, indicating its great potential for pavement crack detection.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.