整合大型语言模型和知识图谱,提取和验证文本测试数据

Antonio De Santis, Marco Balduini, Federico De Santis, Andrea Proia, Arsenio Leo, Marco Brambilla, Emanuele Della Valle
{"title":"整合大型语言模型和知识图谱,提取和验证文本测试数据","authors":"Antonio De Santis, Marco Balduini, Federico De Santis, Andrea Proia, Arsenio Leo, Marco Brambilla, Emanuele Della Valle","doi":"arxiv-2408.01700","DOIUrl":null,"url":null,"abstract":"Aerospace manufacturing companies, such as Thales Alenia Space, design,\ndevelop, integrate, verify, and validate products characterized by high\ncomplexity and low volume. They carefully document all phases for each product\nbut analyses across products are challenging due to the heterogeneity and\nunstructured nature of the data in documents. In this paper, we propose a\nhybrid methodology that leverages Knowledge Graphs (KGs) in conjunction with\nLarge Language Models (LLMs) to extract and validate data contained in these\ndocuments. We consider a case study focused on test data related to electronic\nboards for satellites. To do so, we extend the Semantic Sensor Network\nontology. We store the metadata of the reports in a KG, while the actual test\nresults are stored in parquet accessible via a Virtual Knowledge Graph. The\nvalidation process is managed using an LLM-based approach. We also conduct a\nbenchmarking study to evaluate the performance of state-of-the-art LLMs in\nexecuting this task. Finally, we analyze the costs and benefits of automating\npreexisting processes of manual data extraction and validation for subsequent\ncross-report analyses.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Large Language Models and Knowledge Graphs for Extraction and Validation of Textual Test Data\",\"authors\":\"Antonio De Santis, Marco Balduini, Federico De Santis, Andrea Proia, Arsenio Leo, Marco Brambilla, Emanuele Della Valle\",\"doi\":\"arxiv-2408.01700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerospace manufacturing companies, such as Thales Alenia Space, design,\\ndevelop, integrate, verify, and validate products characterized by high\\ncomplexity and low volume. They carefully document all phases for each product\\nbut analyses across products are challenging due to the heterogeneity and\\nunstructured nature of the data in documents. In this paper, we propose a\\nhybrid methodology that leverages Knowledge Graphs (KGs) in conjunction with\\nLarge Language Models (LLMs) to extract and validate data contained in these\\ndocuments. We consider a case study focused on test data related to electronic\\nboards for satellites. To do so, we extend the Semantic Sensor Network\\nontology. We store the metadata of the reports in a KG, while the actual test\\nresults are stored in parquet accessible via a Virtual Knowledge Graph. The\\nvalidation process is managed using an LLM-based approach. We also conduct a\\nbenchmarking study to evaluate the performance of state-of-the-art LLMs in\\nexecuting this task. Finally, we analyze the costs and benefits of automating\\npreexisting processes of manual data extraction and validation for subsequent\\ncross-report analyses.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

航空航天制造公司(如泰雷兹阿莱尼亚宇航公司)设计、开发、集成、验证和确认的产品具有高复杂性和低产量的特点。他们仔细记录每个产品的所有阶段,但由于文档中数据的异质性和非结构化性质,跨产品分析具有挑战性。在本文中,我们提出了一种混合方法,利用知识图谱(KG)和大型语言模型(LLM)来提取和验证文档中包含的数据。我们考虑的案例研究侧重于与卫星电子板相关的测试数据。为此,我们扩展了语义传感器网络本体。我们将报告的元数据存储在 KG 中,而实际测试结果则存储在可通过虚拟知识图谱访问的 parquet 中。验证过程采用基于 LLM 的方法进行管理。我们还进行了一项enchmarking 研究,以评估最先进的 LLM 在执行这项任务时的性能。最后,我们分析了将现有的人工数据提取和验证流程自动化以进行后续交叉报告分析的成本和收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Large Language Models and Knowledge Graphs for Extraction and Validation of Textual Test Data
Aerospace manufacturing companies, such as Thales Alenia Space, design, develop, integrate, verify, and validate products characterized by high complexity and low volume. They carefully document all phases for each product but analyses across products are challenging due to the heterogeneity and unstructured nature of the data in documents. In this paper, we propose a hybrid methodology that leverages Knowledge Graphs (KGs) in conjunction with Large Language Models (LLMs) to extract and validate data contained in these documents. We consider a case study focused on test data related to electronic boards for satellites. To do so, we extend the Semantic Sensor Network ontology. We store the metadata of the reports in a KG, while the actual test results are stored in parquet accessible via a Virtual Knowledge Graph. The validation process is managed using an LLM-based approach. We also conduct a benchmarking study to evaluate the performance of state-of-the-art LLMs in executing this task. Finally, we analyze the costs and benefits of automating preexisting processes of manual data extraction and validation for subsequent cross-report analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信