强化学习中对象级泛化的视觉基础

Haobin Jiang, Zongqing Lu
{"title":"强化学习中对象级泛化的视觉基础","authors":"Haobin Jiang, Zongqing Lu","doi":"arxiv-2408.01942","DOIUrl":null,"url":null,"abstract":"Generalization is a pivotal challenge for agents following natural language\ninstructions. To approach this goal, we leverage a vision-language model (VLM)\nfor visual grounding and transfer its vision-language knowledge into\nreinforcement learning (RL) for object-centric tasks, which makes the agent\ncapable of zero-shot generalization to unseen objects and instructions. By\nvisual grounding, we obtain an object-grounded confidence map for the target\nobject indicated in the instruction. Based on this map, we introduce two routes\nto transfer VLM knowledge into RL. Firstly, we propose an object-grounded\nintrinsic reward function derived from the confidence map to more effectively\nguide the agent towards the target object. Secondly, the confidence map offers\na more unified, accessible task representation for the agent's policy, compared\nto language embeddings. This enables the agent to process unseen objects and\ninstructions through comprehensible visual confidence maps, facilitating\nzero-shot object-level generalization. Single-task experiments prove that our\nintrinsic reward significantly improves performance on challenging skill\nlearning. In multi-task experiments, through testing on tasks beyond the\ntraining set, we show that the agent, when provided with the confidence map as\nthe task representation, possesses better generalization capabilities than\nlanguage-based conditioning. The code is available at\nhttps://github.com/PKU-RL/COPL.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Grounding for Object-Level Generalization in Reinforcement Learning\",\"authors\":\"Haobin Jiang, Zongqing Lu\",\"doi\":\"arxiv-2408.01942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalization is a pivotal challenge for agents following natural language\\ninstructions. To approach this goal, we leverage a vision-language model (VLM)\\nfor visual grounding and transfer its vision-language knowledge into\\nreinforcement learning (RL) for object-centric tasks, which makes the agent\\ncapable of zero-shot generalization to unseen objects and instructions. By\\nvisual grounding, we obtain an object-grounded confidence map for the target\\nobject indicated in the instruction. Based on this map, we introduce two routes\\nto transfer VLM knowledge into RL. Firstly, we propose an object-grounded\\nintrinsic reward function derived from the confidence map to more effectively\\nguide the agent towards the target object. Secondly, the confidence map offers\\na more unified, accessible task representation for the agent's policy, compared\\nto language embeddings. This enables the agent to process unseen objects and\\ninstructions through comprehensible visual confidence maps, facilitating\\nzero-shot object-level generalization. Single-task experiments prove that our\\nintrinsic reward significantly improves performance on challenging skill\\nlearning. In multi-task experiments, through testing on tasks beyond the\\ntraining set, we show that the agent, when provided with the confidence map as\\nthe task representation, possesses better generalization capabilities than\\nlanguage-based conditioning. The code is available at\\nhttps://github.com/PKU-RL/COPL.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于遵循自然语言指令的代理来说,泛化是一项关键挑战。为了实现这一目标,我们利用视觉语言模型(VLM)进行视觉接地,并将其视觉语言知识转移到以对象为中心的任务的强化学习(RL)中,从而使代理能够对未见过的对象和指令进行零点泛化。通过视觉接地,我们获得了指令中指示的目标对象的对象接地置信度图。在此基础上,我们提出了两种将 VLM 知识转移到 RL 中的方法。首先,我们提出了一个由置信度图衍生出的基于对象的内在奖励函数,以更有效地引导代理走向目标对象。其次,与语言嵌入相比,置信度图为代理的策略提供了更统一、更易用的任务表示。这使代理能够通过可理解的可视化置信度地图来处理未见过的对象和指令,从而促进零镜头对象级的泛化。单任务实验证明,我们的内在奖励显著提高了高难度技能学习的性能。在多任务实验中,通过对训练集以外的任务进行测试,我们证明,当提供置信度图作为任务表征时,代理拥有比基于语言的条件反射更好的泛化能力。代码可在https://github.com/PKU-RL/COPL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Grounding for Object-Level Generalization in Reinforcement Learning
Generalization is a pivotal challenge for agents following natural language instructions. To approach this goal, we leverage a vision-language model (VLM) for visual grounding and transfer its vision-language knowledge into reinforcement learning (RL) for object-centric tasks, which makes the agent capable of zero-shot generalization to unseen objects and instructions. By visual grounding, we obtain an object-grounded confidence map for the target object indicated in the instruction. Based on this map, we introduce two routes to transfer VLM knowledge into RL. Firstly, we propose an object-grounded intrinsic reward function derived from the confidence map to more effectively guide the agent towards the target object. Secondly, the confidence map offers a more unified, accessible task representation for the agent's policy, compared to language embeddings. This enables the agent to process unseen objects and instructions through comprehensible visual confidence maps, facilitating zero-shot object-level generalization. Single-task experiments prove that our intrinsic reward significantly improves performance on challenging skill learning. In multi-task experiments, through testing on tasks beyond the training set, we show that the agent, when provided with the confidence map as the task representation, possesses better generalization capabilities than language-based conditioning. The code is available at https://github.com/PKU-RL/COPL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信