{"title":"具有厚子曲面的空间中的分布","authors":"Jiajia Ding, Jasson Vindas, Yunyun Yang","doi":"arxiv-2408.02864","DOIUrl":null,"url":null,"abstract":"This article generalizes the results of [J. Math. Anal. Appl. 512 (2022),\nArticle No. 126075], which presented a theory of distributions (generalized\nfunctions) with a singular curve contained in the domain of the test functions.\nIn this present article we construct a theory of distributions in\n$\\mathbb{R}^n$ with a ``thick submanifold'', that is, a new theory of thick\ndistributions in $\\mathbb{R}^n$ whose domain contains a submanifold on which\ntest functions may be singular.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributions in spaces with thick submanifolds\",\"authors\":\"Jiajia Ding, Jasson Vindas, Yunyun Yang\",\"doi\":\"arxiv-2408.02864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article generalizes the results of [J. Math. Anal. Appl. 512 (2022),\\nArticle No. 126075], which presented a theory of distributions (generalized\\nfunctions) with a singular curve contained in the domain of the test functions.\\nIn this present article we construct a theory of distributions in\\n$\\\\mathbb{R}^n$ with a ``thick submanifold'', that is, a new theory of thick\\ndistributions in $\\\\mathbb{R}^n$ whose domain contains a submanifold on which\\ntest functions may be singular.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This article generalizes the results of [J. Math. Anal. Appl. 512 (2022),
Article No. 126075], which presented a theory of distributions (generalized
functions) with a singular curve contained in the domain of the test functions.
In this present article we construct a theory of distributions in
$\mathbb{R}^n$ with a ``thick submanifold'', that is, a new theory of thick
distributions in $\mathbb{R}^n$ whose domain contains a submanifold on which
test functions may be singular.