开发 REGAI:Rubric Enabled Generative Artificial Intelligence(评分标准支持的生成式人工智能

Zach Johnson, Jeremy Straub
{"title":"开发 REGAI:Rubric Enabled Generative Artificial Intelligence(评分标准支持的生成式人工智能","authors":"Zach Johnson, Jeremy Straub","doi":"arxiv-2408.02811","DOIUrl":null,"url":null,"abstract":"This paper presents and evaluates a new retrieval augmented generation (RAG)\nand large language model (LLM)-based artificial intelligence (AI) technique:\nrubric enabled generative artificial intelligence (REGAI). REGAI uses rubrics,\nwhich can be created manually or automatically by the system, to enhance the\nperformance of LLMs for evaluation purposes. REGAI improves on the performance\nof both classical LLMs and RAG-based LLM techniques. This paper describes\nREGAI, presents data regarding its performance and discusses several possible\napplication areas for the technology.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of REGAI: Rubric Enabled Generative Artificial Intelligence\",\"authors\":\"Zach Johnson, Jeremy Straub\",\"doi\":\"arxiv-2408.02811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents and evaluates a new retrieval augmented generation (RAG)\\nand large language model (LLM)-based artificial intelligence (AI) technique:\\nrubric enabled generative artificial intelligence (REGAI). REGAI uses rubrics,\\nwhich can be created manually or automatically by the system, to enhance the\\nperformance of LLMs for evaluation purposes. REGAI improves on the performance\\nof both classical LLMs and RAG-based LLM techniques. This paper describes\\nREGAI, presents data regarding its performance and discusses several possible\\napplication areas for the technology.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并评估了一种新的基于检索增强生成(RAG)和大型语言模型(LLM)的人工智能(AI)技术:支持评分标准的生成式人工智能(REGAI)。REGAI 使用评分标准(可由系统手动或自动创建)来提高 LLM 的性能,以达到评估目的。REGAI 提高了经典 LLM 和基于 RAG 的 LLM 技术的性能。本文介绍了 REGAI,提供了有关其性能的数据,并讨论了该技术的几个可能应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of REGAI: Rubric Enabled Generative Artificial Intelligence
This paper presents and evaluates a new retrieval augmented generation (RAG) and large language model (LLM)-based artificial intelligence (AI) technique: rubric enabled generative artificial intelligence (REGAI). REGAI uses rubrics, which can be created manually or automatically by the system, to enhance the performance of LLMs for evaluation purposes. REGAI improves on the performance of both classical LLMs and RAG-based LLM techniques. This paper describes REGAI, presents data regarding its performance and discusses several possible application areas for the technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信