和睦相处的希格森日冕团体

Alexander Engel
{"title":"和睦相处的希格森日冕团体","authors":"Alexander Engel","doi":"arxiv-2408.02997","DOIUrl":null,"url":null,"abstract":"We investigate groups that act amenably on their Higson corona (also known as\nbi-exact groups) and we provide reformulations of this in relation to the\nstable Higson corona, nuclearity of crossed products and to positive type\nkernels. We further investigate implications of this in relation to the\nBaum-Connes conjecture, and prove that Gromov hyperbolic groups have isomorphic\nequivariant K-theories of their Gromov boundary and their stable Higson corona.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groups acting amenably on their Higson corona\",\"authors\":\"Alexander Engel\",\"doi\":\"arxiv-2408.02997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate groups that act amenably on their Higson corona (also known as\\nbi-exact groups) and we provide reformulations of this in relation to the\\nstable Higson corona, nuclearity of crossed products and to positive type\\nkernels. We further investigate implications of this in relation to the\\nBaum-Connes conjecture, and prove that Gromov hyperbolic groups have isomorphic\\nequivariant K-theories of their Gromov boundary and their stable Higson corona.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了可作用于其希格森冕的群组(也称为双作用群组),并结合稳定希格森冕、交叉积的核性和正型核对此进行了重新阐述。我们进一步研究了这一点与鲍姆-康恩猜想(Baum-Connes conjecture)之间的关系,并证明了格罗莫夫双曲群的格罗莫夫边界和稳定希格森冕具有同构向量 K 理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groups acting amenably on their Higson corona
We investigate groups that act amenably on their Higson corona (also known as bi-exact groups) and we provide reformulations of this in relation to the stable Higson corona, nuclearity of crossed products and to positive type kernels. We further investigate implications of this in relation to the Baum-Connes conjecture, and prove that Gromov hyperbolic groups have isomorphic equivariant K-theories of their Gromov boundary and their stable Higson corona.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信