{"title":"具有积结构的新型傅里叶积分算子的有界性","authors":"Chaoqiang Tan, Zipeng Wang","doi":"arxiv-2408.03211","DOIUrl":null,"url":null,"abstract":"We investigate a class of Fourier integral operators with weakened symbols,\nwhich satisfy a multi-parameter differential inequality in $\\R^n$. We establish\nthat these operators retain the classical $L^p$ boundedness and the $H^1$ to\n$L^1$ boundedness. Notably, the Hardy space considered here is the traditional\nsingle-parameter Hardy space rather than a product Hardy space.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness of New Type Fourier Integral Operators with Product Structure\",\"authors\":\"Chaoqiang Tan, Zipeng Wang\",\"doi\":\"arxiv-2408.03211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a class of Fourier integral operators with weakened symbols,\\nwhich satisfy a multi-parameter differential inequality in $\\\\R^n$. We establish\\nthat these operators retain the classical $L^p$ boundedness and the $H^1$ to\\n$L^1$ boundedness. Notably, the Hardy space considered here is the traditional\\nsingle-parameter Hardy space rather than a product Hardy space.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Boundedness of New Type Fourier Integral Operators with Product Structure
We investigate a class of Fourier integral operators with weakened symbols,
which satisfy a multi-parameter differential inequality in $\R^n$. We establish
that these operators retain the classical $L^p$ boundedness and the $H^1$ to
$L^1$ boundedness. Notably, the Hardy space considered here is the traditional
single-parameter Hardy space rather than a product Hardy space.