矩阵的格什高林型谱夹杂

Simon N. Chandler-Wilde, Marko Lindner
{"title":"矩阵的格什高林型谱夹杂","authors":"Simon N. Chandler-Wilde, Marko Lindner","doi":"arxiv-2408.03883","DOIUrl":null,"url":null,"abstract":"In this paper we derive families of Gershgorin-type inclusion sets for the\nspectra and pseudospectra of finite matrices. In common with previous\ngeneralisations of the classical Gershgorin bound for the spectrum, our\ninclusion sets are based on a block decomposition. In contrast to previous\ngeneralisations that treat the matrix as a perturbation of a block-diagonal\nsubmatrix, our arguments treat the matrix as a perturbation of a\nblock-tridiagonal matrix, which can lead to sharp spectral bounds, as we show\nfor the example of large Toeplitz matrices. Our inclusion sets, which take the\nform of unions of pseudospectra of square or rectangular submatrices, build on\nour own recent work on inclusion sets for bi-infinite matrices [Chandler-Wilde,\nChonchaiya, Lindner, {\\em J. Spectr. Theory} {\\bf 14}, 719--804 (2024)].","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gershgorin-Type Spectral Inclusions for Matrices\",\"authors\":\"Simon N. Chandler-Wilde, Marko Lindner\",\"doi\":\"arxiv-2408.03883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we derive families of Gershgorin-type inclusion sets for the\\nspectra and pseudospectra of finite matrices. In common with previous\\ngeneralisations of the classical Gershgorin bound for the spectrum, our\\ninclusion sets are based on a block decomposition. In contrast to previous\\ngeneralisations that treat the matrix as a perturbation of a block-diagonal\\nsubmatrix, our arguments treat the matrix as a perturbation of a\\nblock-tridiagonal matrix, which can lead to sharp spectral bounds, as we show\\nfor the example of large Toeplitz matrices. Our inclusion sets, which take the\\nform of unions of pseudospectra of square or rectangular submatrices, build on\\nour own recent work on inclusion sets for bi-infinite matrices [Chandler-Wilde,\\nChonchaiya, Lindner, {\\\\em J. Spectr. Theory} {\\\\bf 14}, 719--804 (2024)].\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们推导出了有限矩阵谱和伪谱的格什高林型包含集系列。与之前对谱的经典格什高林约束的概括一样,我们的包含集基于块分解。与之前将矩阵视为块对角线子矩阵扰动的概括不同,我们的论证将矩阵视为块对角线矩阵的扰动,这可以导致尖锐的谱约束,正如我们以大型托普利兹矩阵为例所展示的那样。我们的包含集是正方形或矩形子矩阵伪谱的联合形式,建立在我们自己最近关于双无限矩阵包含集的工作之上[Chandler-Wilde, Chonchaiya, Lindner, {\em J. Spectr.Theory}{\bf 14}, 719--804 (2024)].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gershgorin-Type Spectral Inclusions for Matrices
In this paper we derive families of Gershgorin-type inclusion sets for the spectra and pseudospectra of finite matrices. In common with previous generalisations of the classical Gershgorin bound for the spectrum, our inclusion sets are based on a block decomposition. In contrast to previous generalisations that treat the matrix as a perturbation of a block-diagonal submatrix, our arguments treat the matrix as a perturbation of a block-tridiagonal matrix, which can lead to sharp spectral bounds, as we show for the example of large Toeplitz matrices. Our inclusion sets, which take the form of unions of pseudospectra of square or rectangular submatrices, build on our own recent work on inclusion sets for bi-infinite matrices [Chandler-Wilde, Chonchaiya, Lindner, {\em J. Spectr. Theory} {\bf 14}, 719--804 (2024)].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信