数字头像:框架开发及其评估

Timothy Rupprecht, Sung-En Chang, Yushu Wu, Lei Lu, Enfu Nan, Chih-hsiang Li, Caiyue Lai, Zhimin Li, Zhijun Hu, Yumei He, David Kaeli, Yanzhi Wang
{"title":"数字头像:框架开发及其评估","authors":"Timothy Rupprecht, Sung-En Chang, Yushu Wu, Lei Lu, Enfu Nan, Chih-hsiang Li, Caiyue Lai, Zhimin Li, Zhijun Hu, Yumei He, David Kaeli, Yanzhi Wang","doi":"arxiv-2408.04068","DOIUrl":null,"url":null,"abstract":"We present a novel prompting strategy for artificial intelligence driven\ndigital avatars. To better quantify how our prompting strategy affects\nanthropomorphic features like humor, authenticity, and favorability we present\nCrowd Vote - an adaptation of Crowd Score that allows for judges to elect a\nlarge language model (LLM) candidate over competitors answering the same or\nsimilar prompts. To visualize the responses of our LLM, and the effectiveness\nof our prompting strategy we propose an end-to-end framework for creating\nhigh-fidelity artificial intelligence (AI) driven digital avatars. This\npipeline effectively captures an individual's essence for interaction and our\nstreaming algorithm delivers a high-quality digital avatar with real-time\naudio-video streaming from server to mobile device. Both our visualization\ntool, and our Crowd Vote metrics demonstrate our AI driven digital avatars have\nstate-of-the-art humor, authenticity, and favorability outperforming all\ncompetitors and baselines. In the case of our Donald Trump and Joe Biden\navatars, their authenticity and favorability are rated higher than even their\nreal-world equivalents.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital Avatars: Framework Development and Their Evaluation\",\"authors\":\"Timothy Rupprecht, Sung-En Chang, Yushu Wu, Lei Lu, Enfu Nan, Chih-hsiang Li, Caiyue Lai, Zhimin Li, Zhijun Hu, Yumei He, David Kaeli, Yanzhi Wang\",\"doi\":\"arxiv-2408.04068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel prompting strategy for artificial intelligence driven\\ndigital avatars. To better quantify how our prompting strategy affects\\nanthropomorphic features like humor, authenticity, and favorability we present\\nCrowd Vote - an adaptation of Crowd Score that allows for judges to elect a\\nlarge language model (LLM) candidate over competitors answering the same or\\nsimilar prompts. To visualize the responses of our LLM, and the effectiveness\\nof our prompting strategy we propose an end-to-end framework for creating\\nhigh-fidelity artificial intelligence (AI) driven digital avatars. This\\npipeline effectively captures an individual's essence for interaction and our\\nstreaming algorithm delivers a high-quality digital avatar with real-time\\naudio-video streaming from server to mobile device. Both our visualization\\ntool, and our Crowd Vote metrics demonstrate our AI driven digital avatars have\\nstate-of-the-art humor, authenticity, and favorability outperforming all\\ncompetitors and baselines. In the case of our Donald Trump and Joe Biden\\navatars, their authenticity and favorability are rated higher than even their\\nreal-world equivalents.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为人工智能驱动的数字头像提出了一种新颖的提示策略。为了更好地量化我们的提示策略对幽默感、真实性和好感度等拟人化特征的影响,我们提出了 "人群投票"(Crowd Vote)--一种对 "人群评分"(Crowd Score)的改编,允许评委在回答相同或相似提示的竞争者中选出一个大型语言模型(LLM)候选者。为了可视化 LLM 的回答以及提示策略的有效性,我们提出了一个端到端框架,用于创建高保真人工智能(AI)驱动的数字头像。该管道能有效捕捉个体的交互本质,我们的流算法能提供高质量的数字头像,并能从服务器向移动设备实时传输音频和视频流。我们的可视化工具和 "群众投票 "指标都表明,我们的人工智能驱动数字化身具有最先进的幽默感、真实性和好感度,优于所有竞争对手和基准线。就我们的唐纳德-特朗普(Donald Trump)和乔-拜登(Joe Biden)头像而言,他们的真实性和好感度甚至高于现实世界中的同类头像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital Avatars: Framework Development and Their Evaluation
We present a novel prompting strategy for artificial intelligence driven digital avatars. To better quantify how our prompting strategy affects anthropomorphic features like humor, authenticity, and favorability we present Crowd Vote - an adaptation of Crowd Score that allows for judges to elect a large language model (LLM) candidate over competitors answering the same or similar prompts. To visualize the responses of our LLM, and the effectiveness of our prompting strategy we propose an end-to-end framework for creating high-fidelity artificial intelligence (AI) driven digital avatars. This pipeline effectively captures an individual's essence for interaction and our streaming algorithm delivers a high-quality digital avatar with real-time audio-video streaming from server to mobile device. Both our visualization tool, and our Crowd Vote metrics demonstrate our AI driven digital avatars have state-of-the-art humor, authenticity, and favorability outperforming all competitors and baselines. In the case of our Donald Trump and Joe Biden avatars, their authenticity and favorability are rated higher than even their real-world equivalents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信