内卷不变函数希尔伯特空间的转移原理

Santu Bera, Sameer Chavan, Shubham Jain
{"title":"内卷不变函数希尔伯特空间的转移原理","authors":"Santu Bera, Sameer Chavan, Shubham Jain","doi":"arxiv-2408.04384","DOIUrl":null,"url":null,"abstract":"Let $\\sigma : \\mathbb C^d \\rightarrow \\mathbb C^d$ be an affine-linear\ninvolution such that $J_\\sigma = -1$ and let $U, V$ be two domains in $\\mathbb\nC^d$ with $U$ being $\\sigma$-invariant. Let $\\phi : U \\rightarrow V$ be a\n$\\sigma$-invariant $2$-proper map such that $J_\\phi$ is affine-linear and let\n$\\mathscr H(U)$ be a $\\sigma$-invariant reproducing kernel Hilbert space of\ncomplex-valued holomorphic functions on $U.$ It is shown that the space\n$\\mathscr H_\\phi(V):=\\{f \\in \\mathrm{Hol}(V) : J_\\phi \\cdot f \\circ \\phi \\in\n\\mathscr H(U)\\}$ endowed with the norm $\\|f\\|_\\phi :=\\|J_\\phi \\cdot f \\circ\n\\phi\\|_{\\mathscr H(U)}$ is a reproducing kernel Hilbert space and the linear\nmapping $\\varGamma_\\phi$ defined by $ \\varGamma_\\phi(f) = J_\\phi \\cdot f \\circ\n\\phi,$ $f \\in \\mathrm{Hol}(V),$ is a unitary from $\\mathscr H_\\phi(V)$ onto\n$\\{f \\in \\mathscr H(U) : f = -f \\circ \\sigma\\}.$ Moreover, a neat formula for\nthe reproducing kernel $\\kappa_{\\phi}$ of $\\mathscr H_\\phi(V)$ in terms of the\nreproducing kernel of $\\mathscr H(U)$ is given. The above scheme is applicable\nto symmetrized bidisc, tetrablock, $d$-dimensional fat Hartogs triangle and\n$d$-dimensional egg domain. This recovers some known results. Our result not\nonly yields a candidate for Hardy spaces but also an analog of von Neumann's\ninequality for contractive tuples naturally associated with these domains.\nUnlike the existing techniques, we capitalize on the methods from several\ncomplex variables.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transference principle for involution-invariant functional Hilbert spaces\",\"authors\":\"Santu Bera, Sameer Chavan, Shubham Jain\",\"doi\":\"arxiv-2408.04384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\sigma : \\\\mathbb C^d \\\\rightarrow \\\\mathbb C^d$ be an affine-linear\\ninvolution such that $J_\\\\sigma = -1$ and let $U, V$ be two domains in $\\\\mathbb\\nC^d$ with $U$ being $\\\\sigma$-invariant. Let $\\\\phi : U \\\\rightarrow V$ be a\\n$\\\\sigma$-invariant $2$-proper map such that $J_\\\\phi$ is affine-linear and let\\n$\\\\mathscr H(U)$ be a $\\\\sigma$-invariant reproducing kernel Hilbert space of\\ncomplex-valued holomorphic functions on $U.$ It is shown that the space\\n$\\\\mathscr H_\\\\phi(V):=\\\\{f \\\\in \\\\mathrm{Hol}(V) : J_\\\\phi \\\\cdot f \\\\circ \\\\phi \\\\in\\n\\\\mathscr H(U)\\\\}$ endowed with the norm $\\\\|f\\\\|_\\\\phi :=\\\\|J_\\\\phi \\\\cdot f \\\\circ\\n\\\\phi\\\\|_{\\\\mathscr H(U)}$ is a reproducing kernel Hilbert space and the linear\\nmapping $\\\\varGamma_\\\\phi$ defined by $ \\\\varGamma_\\\\phi(f) = J_\\\\phi \\\\cdot f \\\\circ\\n\\\\phi,$ $f \\\\in \\\\mathrm{Hol}(V),$ is a unitary from $\\\\mathscr H_\\\\phi(V)$ onto\\n$\\\\{f \\\\in \\\\mathscr H(U) : f = -f \\\\circ \\\\sigma\\\\}.$ Moreover, a neat formula for\\nthe reproducing kernel $\\\\kappa_{\\\\phi}$ of $\\\\mathscr H_\\\\phi(V)$ in terms of the\\nreproducing kernel of $\\\\mathscr H(U)$ is given. The above scheme is applicable\\nto symmetrized bidisc, tetrablock, $d$-dimensional fat Hartogs triangle and\\n$d$-dimensional egg domain. This recovers some known results. Our result not\\nonly yields a candidate for Hardy spaces but also an analog of von Neumann's\\ninequality for contractive tuples naturally associated with these domains.\\nUnlike the existing techniques, we capitalize on the methods from several\\ncomplex variables.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\sigma : \mathbb C^d \rightarrow \mathbb C^d$ 是一个仿射线性卷积,使得 $J_\sigma = -1$ 并且让 $U, V$ 是 $\mathbbC^d$ 中的两个域,其中 $U$ 是 $\sigma$ 不变的。让$\phi : U \rightarrow V$ 是一个$\sigma$不变的2$正映射,使得$J_\phi$是仿射线性的,并且让$\mathscr H(U)$ 是一个$\sigma$不变的复值全态函数在$U上的重现核希尔伯特空间。$ 可以证明空间$mathscr H_\phi(V):=\{f \in \mathrm{Hol}(V) :J_\phi \cdot f \circ \phi \in\mathscr H(U)\}$ 赋予规范 $\|f\|_\phi :=J_\phi \cdot f \circ\phi\|_{mathscr H(U)}$ 是重现核希尔伯特空间,线性映射 $\varGamma_\phi$ 定义为 $ \varGamma_\phi(f) = J_\phi \cdot f \circ\phi、$f \in \mathrm{Hol}(V),$ 是从 $mathscr H_\phi(V)$ 到 ${f \in \mathscr H(U) :f = -f \circ \sigma\}.此外,我们还给出了$\mathscr H_\phi(V)$的重现核$\kappa_{\phi}$与$\mathscr H(U)$的重现核的简明公式。上述方案适用于对称双盘、四块、d$维胖哈托格三角形和d$维蛋域。这恢复了一些已知结果。我们的结果不仅为哈代空间提供了一个候选域,而且还为与这些域天然相关的收缩元组提供了冯-诺依曼正弦品质的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A transference principle for involution-invariant functional Hilbert spaces
Let $\sigma : \mathbb C^d \rightarrow \mathbb C^d$ be an affine-linear involution such that $J_\sigma = -1$ and let $U, V$ be two domains in $\mathbb C^d$ with $U$ being $\sigma$-invariant. Let $\phi : U \rightarrow V$ be a $\sigma$-invariant $2$-proper map such that $J_\phi$ is affine-linear and let $\mathscr H(U)$ be a $\sigma$-invariant reproducing kernel Hilbert space of complex-valued holomorphic functions on $U.$ It is shown that the space $\mathscr H_\phi(V):=\{f \in \mathrm{Hol}(V) : J_\phi \cdot f \circ \phi \in \mathscr H(U)\}$ endowed with the norm $\|f\|_\phi :=\|J_\phi \cdot f \circ \phi\|_{\mathscr H(U)}$ is a reproducing kernel Hilbert space and the linear mapping $\varGamma_\phi$ defined by $ \varGamma_\phi(f) = J_\phi \cdot f \circ \phi,$ $f \in \mathrm{Hol}(V),$ is a unitary from $\mathscr H_\phi(V)$ onto $\{f \in \mathscr H(U) : f = -f \circ \sigma\}.$ Moreover, a neat formula for the reproducing kernel $\kappa_{\phi}$ of $\mathscr H_\phi(V)$ in terms of the reproducing kernel of $\mathscr H(U)$ is given. The above scheme is applicable to symmetrized bidisc, tetrablock, $d$-dimensional fat Hartogs triangle and $d$-dimensional egg domain. This recovers some known results. Our result not only yields a candidate for Hardy spaces but also an analog of von Neumann's inequality for contractive tuples naturally associated with these domains. Unlike the existing techniques, we capitalize on the methods from several complex variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信