{"title":"沿算术集合的遍历平均的非交换最大不等式","authors":"Cheng Chen, Guixiang Hong, Liang Wang","doi":"arxiv-2408.04374","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a noncommutative maximal inequality for ergodic\naverages with respect to the set $\\{k^t|k=1,2,3,...\\}$ acting on noncommutative\n$L_p$ spaces for $p>\\frac{\\sqrt{5}+1}{2}$.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A noncommutative maximal inequality for ergodic averages along arithmetic sets\",\"authors\":\"Cheng Chen, Guixiang Hong, Liang Wang\",\"doi\":\"arxiv-2408.04374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish a noncommutative maximal inequality for ergodic\\naverages with respect to the set $\\\\{k^t|k=1,2,3,...\\\\}$ acting on noncommutative\\n$L_p$ spaces for $p>\\\\frac{\\\\sqrt{5}+1}{2}$.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A noncommutative maximal inequality for ergodic averages along arithmetic sets
In this paper, we establish a noncommutative maximal inequality for ergodic
averages with respect to the set $\{k^t|k=1,2,3,...\}$ acting on noncommutative
$L_p$ spaces for $p>\frac{\sqrt{5}+1}{2}$.