简单核 C* 结构的 KK 刚性

Christopher Schafhauser
{"title":"简单核 C* 结构的 KK 刚性","authors":"Christopher Schafhauser","doi":"arxiv-2408.02745","DOIUrl":null,"url":null,"abstract":"It is shown that if $A$ and $B$ are unital separable simple nuclear $\\mathcal\nZ$-stable C$^*$-algebras and there is a unital embedding $A \\rightarrow B$\nwhich is invertible on $KK$-theory and traces, then $A \\cong B$. In particular,\ntwo unital separable simple nuclear $\\mathcal Z$-stable C$^*$-algebras which\neither have real rank zero or unique trace are isomorphic if and only if they\nare homotopy equivalent. It is further shown that two finite strongly\nself-absorbing C$^*$-algebras are isomorphic if and only if they are\n$KK$-equivalent in a unit-preserving way.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KK-rigidity of simple nuclear C*-algebras\",\"authors\":\"Christopher Schafhauser\",\"doi\":\"arxiv-2408.02745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that if $A$ and $B$ are unital separable simple nuclear $\\\\mathcal\\nZ$-stable C$^*$-algebras and there is a unital embedding $A \\\\rightarrow B$\\nwhich is invertible on $KK$-theory and traces, then $A \\\\cong B$. In particular,\\ntwo unital separable simple nuclear $\\\\mathcal Z$-stable C$^*$-algebras which\\neither have real rank zero or unique trace are isomorphic if and only if they\\nare homotopy equivalent. It is further shown that two finite strongly\\nself-absorbing C$^*$-algebras are isomorphic if and only if they are\\n$KK$-equivalent in a unit-preserving way.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,如果 $A$ 和 $B$ 是单原子可分离简单核 $\mathcalZ$ 稳定 C$^*$ 对象,并且存在一个在 $K$ 理论和迹线上可反转的单原子嵌入 $A \rightarrow B$,那么 $A \cong B$。具体地说,当且仅当两个同调等价的可分离简单核 $mathcal Z$ 稳定 C$^*$ 对象的实阶为零或迹线唯一时,它们是同构的。研究进一步证明,当且仅当两个有限强自吸收 C$^*$ 对象以单位保留的方式等价于 $KK$ 时,它们是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KK-rigidity of simple nuclear C*-algebras
It is shown that if $A$ and $B$ are unital separable simple nuclear $\mathcal Z$-stable C$^*$-algebras and there is a unital embedding $A \rightarrow B$ which is invertible on $KK$-theory and traces, then $A \cong B$. In particular, two unital separable simple nuclear $\mathcal Z$-stable C$^*$-algebras which either have real rank zero or unique trace are isomorphic if and only if they are homotopy equivalent. It is further shown that two finite strongly self-absorbing C$^*$-algebras are isomorphic if and only if they are $KK$-equivalent in a unit-preserving way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信