{"title":"简单核 C* 结构的 KK 刚性","authors":"Christopher Schafhauser","doi":"arxiv-2408.02745","DOIUrl":null,"url":null,"abstract":"It is shown that if $A$ and $B$ are unital separable simple nuclear $\\mathcal\nZ$-stable C$^*$-algebras and there is a unital embedding $A \\rightarrow B$\nwhich is invertible on $KK$-theory and traces, then $A \\cong B$. In particular,\ntwo unital separable simple nuclear $\\mathcal Z$-stable C$^*$-algebras which\neither have real rank zero or unique trace are isomorphic if and only if they\nare homotopy equivalent. It is further shown that two finite strongly\nself-absorbing C$^*$-algebras are isomorphic if and only if they are\n$KK$-equivalent in a unit-preserving way.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KK-rigidity of simple nuclear C*-algebras\",\"authors\":\"Christopher Schafhauser\",\"doi\":\"arxiv-2408.02745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that if $A$ and $B$ are unital separable simple nuclear $\\\\mathcal\\nZ$-stable C$^*$-algebras and there is a unital embedding $A \\\\rightarrow B$\\nwhich is invertible on $KK$-theory and traces, then $A \\\\cong B$. In particular,\\ntwo unital separable simple nuclear $\\\\mathcal Z$-stable C$^*$-algebras which\\neither have real rank zero or unique trace are isomorphic if and only if they\\nare homotopy equivalent. It is further shown that two finite strongly\\nself-absorbing C$^*$-algebras are isomorphic if and only if they are\\n$KK$-equivalent in a unit-preserving way.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It is shown that if $A$ and $B$ are unital separable simple nuclear $\mathcal
Z$-stable C$^*$-algebras and there is a unital embedding $A \rightarrow B$
which is invertible on $KK$-theory and traces, then $A \cong B$. In particular,
two unital separable simple nuclear $\mathcal Z$-stable C$^*$-algebras which
either have real rank zero or unique trace are isomorphic if and only if they
are homotopy equivalent. It is further shown that two finite strongly
self-absorbing C$^*$-algebras are isomorphic if and only if they are
$KK$-equivalent in a unit-preserving way.