解析 Lipschitz 函数的近似泰勒定理

Stephen Deterding
{"title":"解析 Lipschitz 函数的近似泰勒定理","authors":"Stephen Deterding","doi":"arxiv-2408.02522","DOIUrl":null,"url":null,"abstract":"Let $U$ be a bounded open subset of the complex plane and let $A_{\\alpha}(U)$\ndenote the set of functions analytic on $U$ that also belong to the little\nLipschitz class with Lipschitz exponent $\\alpha$. It is shown that if\n$A_{\\alpha}(U)$ admits a bounded point derivation at $x \\in \\partial U$, then\nthere is an approximate Taylor Theorem for $A_{\\alpha}(U)$ at $x$. This extends\nand generalizes known results concerning bounded point derivations.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"193 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Taylor theorem for analytic Lipschitz functions\",\"authors\":\"Stephen Deterding\",\"doi\":\"arxiv-2408.02522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $U$ be a bounded open subset of the complex plane and let $A_{\\\\alpha}(U)$\\ndenote the set of functions analytic on $U$ that also belong to the little\\nLipschitz class with Lipschitz exponent $\\\\alpha$. It is shown that if\\n$A_{\\\\alpha}(U)$ admits a bounded point derivation at $x \\\\in \\\\partial U$, then\\nthere is an approximate Taylor Theorem for $A_{\\\\alpha}(U)$ at $x$. This extends\\nand generalizes known results concerning bounded point derivations.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $U$ 是复平面的有界开放子集,让 $A_{\alpha}(U)$ 表示在 $U$ 上分析的函数集合,这些函数也属于具有 Lipschitz 指数 $\alpha$ 的 littleLipschitz 类。研究表明,如果$A_{\alpha}(U)$ 在 $x \ in \partial U$ 处允许有界点派生,那么$A_{\alpha}(U)$ 在 $x$ 处就有一个近似泰勒定理。这扩展和概括了关于有界点导数的已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Taylor theorem for analytic Lipschitz functions
Let $U$ be a bounded open subset of the complex plane and let $A_{\alpha}(U)$ denote the set of functions analytic on $U$ that also belong to the little Lipschitz class with Lipschitz exponent $\alpha$. It is shown that if $A_{\alpha}(U)$ admits a bounded point derivation at $x \in \partial U$, then there is an approximate Taylor Theorem for $A_{\alpha}(U)$ at $x$. This extends and generalizes known results concerning bounded point derivations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信