{"title":"研究微颗粒对复合材料层压板机械性能和损坏失效的影响","authors":"Hussein Kommur Dalfi, Amer Alomarah, Anwer Al-Obaidi","doi":"10.1177/15280837241275018","DOIUrl":null,"url":null,"abstract":"Composite materials are increasingly used in a broad range of applications due to their recognizable mechanical properties and the high strength-to-weight ratio. The aim of the current study is to improve the mechanical properties and fracture toughness of composite laminates. Several types of fabrics, such as glass, carbon, and Kevlar, and micro-particles are adopted to create composite laminates via the vacuum infusion method. The mechanical performances of the proposed laminates were evaluated via tensile and flexural strength tests. Moreover, the impact strength tests were conducted to examine their dynamic performances. Results showed that woven laminates such as glass woven, carbon woven, and Kevlar woven composites with micro-particles revealed better tensile properties compared with those without micro-particles. For instance, enhancement in the Young’s modulus with around 5%, 6%, and 13% were resulted from the glass, carbon, and Kevlar fabrics with fillers, respectively. Furthermore, higher impact strength and fracture toughness were obtained from the laminates of glass, carbon and Kevlar with inclusion of thermoplastic particles. For example, the glass, carbon and Kevlar fabrics composites with fillers samples showed improvement in the fracture toughness with around 24%, 17% and 14%, respectively. In addition, numerical simulation findings of flexural failure load and damage failure modes were in accordance with experimental results both qualitatively and quantitatively.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the influence of micro-particles on the mechanical performance and damage failures of composite laminates\",\"authors\":\"Hussein Kommur Dalfi, Amer Alomarah, Anwer Al-Obaidi\",\"doi\":\"10.1177/15280837241275018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite materials are increasingly used in a broad range of applications due to their recognizable mechanical properties and the high strength-to-weight ratio. The aim of the current study is to improve the mechanical properties and fracture toughness of composite laminates. Several types of fabrics, such as glass, carbon, and Kevlar, and micro-particles are adopted to create composite laminates via the vacuum infusion method. The mechanical performances of the proposed laminates were evaluated via tensile and flexural strength tests. Moreover, the impact strength tests were conducted to examine their dynamic performances. Results showed that woven laminates such as glass woven, carbon woven, and Kevlar woven composites with micro-particles revealed better tensile properties compared with those without micro-particles. For instance, enhancement in the Young’s modulus with around 5%, 6%, and 13% were resulted from the glass, carbon, and Kevlar fabrics with fillers, respectively. Furthermore, higher impact strength and fracture toughness were obtained from the laminates of glass, carbon and Kevlar with inclusion of thermoplastic particles. For example, the glass, carbon and Kevlar fabrics composites with fillers samples showed improvement in the fracture toughness with around 24%, 17% and 14%, respectively. In addition, numerical simulation findings of flexural failure load and damage failure modes were in accordance with experimental results both qualitatively and quantitatively.\",\"PeriodicalId\":16097,\"journal\":{\"name\":\"Journal of Industrial Textiles\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/15280837241275018\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15280837241275018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Studying the influence of micro-particles on the mechanical performance and damage failures of composite laminates
Composite materials are increasingly used in a broad range of applications due to their recognizable mechanical properties and the high strength-to-weight ratio. The aim of the current study is to improve the mechanical properties and fracture toughness of composite laminates. Several types of fabrics, such as glass, carbon, and Kevlar, and micro-particles are adopted to create composite laminates via the vacuum infusion method. The mechanical performances of the proposed laminates were evaluated via tensile and flexural strength tests. Moreover, the impact strength tests were conducted to examine their dynamic performances. Results showed that woven laminates such as glass woven, carbon woven, and Kevlar woven composites with micro-particles revealed better tensile properties compared with those without micro-particles. For instance, enhancement in the Young’s modulus with around 5%, 6%, and 13% were resulted from the glass, carbon, and Kevlar fabrics with fillers, respectively. Furthermore, higher impact strength and fracture toughness were obtained from the laminates of glass, carbon and Kevlar with inclusion of thermoplastic particles. For example, the glass, carbon and Kevlar fabrics composites with fillers samples showed improvement in the fracture toughness with around 24%, 17% and 14%, respectively. In addition, numerical simulation findings of flexural failure load and damage failure modes were in accordance with experimental results both qualitatively and quantitatively.
期刊介绍:
The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.