Jiachen Zhou, Baoxian Su, Binbin Wang, Liangshun Luo, Tong Liu, Yanan Wang, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu
{"title":"通过调节激光功率实现激光粉末床熔融 Ti-6.5Al-2Zr-1Mo-1V 合金的强度-电导率协同效应","authors":"Jiachen Zhou, Baoxian Su, Binbin Wang, Liangshun Luo, Tong Liu, Yanan Wang, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu","doi":"10.1016/j.jmrt.2024.07.236","DOIUrl":null,"url":null,"abstract":"In general, the Ti–6.5Al–2Zr–1Mo–1V (TA15) components fabricated via laser powder bed fusion (L-PBF) exhibit high strength and low ductility. Herein, we report a novel approach to enhance the comprehensive mechanical properties of L-PBF TA15 alloy by adjusting the laser power. Samples processed using the optimal laser power exhibit a grid structure of alternating wide and narrow prior-β grains (PBGs), the inside of which is composed of a fully martensitic microstructure. The paper discusses in detail the alterations in the microstructure of samples processed at both low and high laser powers, clarifying the relationship between microstructure and mechanical properties. Thinner martensite contributes to higher strength, while a homogenous microstructure improves ductility. These findings provide valuable insights for controlling microstructure and achieving strength-ductility synergy in L-PBF additive manufacturing of titanium alloys.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving strength-ductility synergy of laser powder bed fusion Ti–6.5Al–2Zr–1Mo–1V alloy by regulating laser power\",\"authors\":\"Jiachen Zhou, Baoxian Su, Binbin Wang, Liangshun Luo, Tong Liu, Yanan Wang, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu\",\"doi\":\"10.1016/j.jmrt.2024.07.236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general, the Ti–6.5Al–2Zr–1Mo–1V (TA15) components fabricated via laser powder bed fusion (L-PBF) exhibit high strength and low ductility. Herein, we report a novel approach to enhance the comprehensive mechanical properties of L-PBF TA15 alloy by adjusting the laser power. Samples processed using the optimal laser power exhibit a grid structure of alternating wide and narrow prior-β grains (PBGs), the inside of which is composed of a fully martensitic microstructure. The paper discusses in detail the alterations in the microstructure of samples processed at both low and high laser powers, clarifying the relationship between microstructure and mechanical properties. Thinner martensite contributes to higher strength, while a homogenous microstructure improves ductility. These findings provide valuable insights for controlling microstructure and achieving strength-ductility synergy in L-PBF additive manufacturing of titanium alloys.\",\"PeriodicalId\":501120,\"journal\":{\"name\":\"Journal of Materials Research and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmrt.2024.07.236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.07.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achieving strength-ductility synergy of laser powder bed fusion Ti–6.5Al–2Zr–1Mo–1V alloy by regulating laser power
In general, the Ti–6.5Al–2Zr–1Mo–1V (TA15) components fabricated via laser powder bed fusion (L-PBF) exhibit high strength and low ductility. Herein, we report a novel approach to enhance the comprehensive mechanical properties of L-PBF TA15 alloy by adjusting the laser power. Samples processed using the optimal laser power exhibit a grid structure of alternating wide and narrow prior-β grains (PBGs), the inside of which is composed of a fully martensitic microstructure. The paper discusses in detail the alterations in the microstructure of samples processed at both low and high laser powers, clarifying the relationship between microstructure and mechanical properties. Thinner martensite contributes to higher strength, while a homogenous microstructure improves ductility. These findings provide valuable insights for controlling microstructure and achieving strength-ductility synergy in L-PBF additive manufacturing of titanium alloys.