有限区间上的最优幂加权哈代不等式

Fritz Gesztesy, Michael M. H. Pang
{"title":"有限区间上的最优幂加权哈代不等式","authors":"Fritz Gesztesy, Michael M. H. Pang","doi":"arxiv-2408.01884","DOIUrl":null,"url":null,"abstract":"We extend a recently derived optimal Hardy inequality in integral form on\nfinite intervals by Dimitrov, Gadjev, and Ismail \\cite{DGI24} to the case of\nadditional power weights and then derive an optimal power-weighted Hardy\ninequality in differential form on finite intervals, noting that the optimal\nconstant of the latter inequality differs from the former. We also derive an\noptimal multi-dimensional version of the power-weighted Hardy inequality in\ndifferential form on spherical shell domains.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal power-weighted Hardy inequalities on finite intervals\",\"authors\":\"Fritz Gesztesy, Michael M. H. Pang\",\"doi\":\"arxiv-2408.01884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend a recently derived optimal Hardy inequality in integral form on\\nfinite intervals by Dimitrov, Gadjev, and Ismail \\\\cite{DGI24} to the case of\\nadditional power weights and then derive an optimal power-weighted Hardy\\ninequality in differential form on finite intervals, noting that the optimal\\nconstant of the latter inequality differs from the former. We also derive an\\noptimal multi-dimensional version of the power-weighted Hardy inequality in\\ndifferential form on spherical shell domains.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将 Dimitrov、Gadjev 和 Ismail 最近在有限区间上以积分形式推导出的最优哈代不等式扩展到附加幂权的情况,然后在有限区间上以微分形式推导出最优幂权哈代不等式,并指出后者的最优常数与前者不同。我们还推导出了球壳域上差分形式的最优多维版幂加权哈代不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal power-weighted Hardy inequalities on finite intervals
We extend a recently derived optimal Hardy inequality in integral form on finite intervals by Dimitrov, Gadjev, and Ismail \cite{DGI24} to the case of additional power weights and then derive an optimal power-weighted Hardy inequality in differential form on finite intervals, noting that the optimal constant of the latter inequality differs from the former. We also derive an optimal multi-dimensional version of the power-weighted Hardy inequality in differential form on spherical shell domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信