Mirko Cesarini, Lorenzo Malandri, Filippo Pallucchini, Andrea Seveso, Frank Xing
{"title":"用于文本分类的可解释人工智能:后发方法综合评估的启示","authors":"Mirko Cesarini, Lorenzo Malandri, Filippo Pallucchini, Andrea Seveso, Frank Xing","doi":"10.1007/s12559-024-10325-w","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the notable gap in evaluating eXplainable Artificial Intelligence (XAI) methods for text classification. While existing frameworks focus on assessing XAI in areas such as recommender systems and visual analytics, a comprehensive evaluation is missing. Our study surveys and categorises recent post hoc XAI methods according to their scope of explanation and output format. We then conduct a systematic evaluation, assessing the effectiveness of these methods across varying scopes and levels of output granularity using a combination of objective metrics and user studies. Key findings reveal that feature-based explanations exhibit higher fidelity than rule-based ones. While global explanations are perceived as more satisfying and trustworthy, they are less practical than local explanations. These insights enhance understanding of XAI in text classification and offer valuable guidance for developing effective XAI systems, enabling users to evaluate each explainer’s pros and cons and select the most suitable one for their needs.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"71 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable AI for Text Classification: Lessons from a Comprehensive Evaluation of Post Hoc Methods\",\"authors\":\"Mirko Cesarini, Lorenzo Malandri, Filippo Pallucchini, Andrea Seveso, Frank Xing\",\"doi\":\"10.1007/s12559-024-10325-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper addresses the notable gap in evaluating eXplainable Artificial Intelligence (XAI) methods for text classification. While existing frameworks focus on assessing XAI in areas such as recommender systems and visual analytics, a comprehensive evaluation is missing. Our study surveys and categorises recent post hoc XAI methods according to their scope of explanation and output format. We then conduct a systematic evaluation, assessing the effectiveness of these methods across varying scopes and levels of output granularity using a combination of objective metrics and user studies. Key findings reveal that feature-based explanations exhibit higher fidelity than rule-based ones. While global explanations are perceived as more satisfying and trustworthy, they are less practical than local explanations. These insights enhance understanding of XAI in text classification and offer valuable guidance for developing effective XAI systems, enabling users to evaluate each explainer’s pros and cons and select the most suitable one for their needs.</p>\",\"PeriodicalId\":51243,\"journal\":{\"name\":\"Cognitive Computation\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12559-024-10325-w\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10325-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Explainable AI for Text Classification: Lessons from a Comprehensive Evaluation of Post Hoc Methods
This paper addresses the notable gap in evaluating eXplainable Artificial Intelligence (XAI) methods for text classification. While existing frameworks focus on assessing XAI in areas such as recommender systems and visual analytics, a comprehensive evaluation is missing. Our study surveys and categorises recent post hoc XAI methods according to their scope of explanation and output format. We then conduct a systematic evaluation, assessing the effectiveness of these methods across varying scopes and levels of output granularity using a combination of objective metrics and user studies. Key findings reveal that feature-based explanations exhibit higher fidelity than rule-based ones. While global explanations are perceived as more satisfying and trustworthy, they are less practical than local explanations. These insights enhance understanding of XAI in text classification and offer valuable guidance for developing effective XAI systems, enabling users to evaluate each explainer’s pros and cons and select the most suitable one for their needs.
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.