某个双线性傅里叶积分算子的估计值

IF 0.9 3区 数学 Q2 MATHEMATICS
Tomoya Kato, Akihiko Miyachi, Naohito Tomita
{"title":"某个双线性傅里叶积分算子的估计值","authors":"Tomoya Kato, Akihiko Miyachi, Naohito Tomita","doi":"10.1007/s11868-024-00631-0","DOIUrl":null,"url":null,"abstract":"<p>The boundedness of bilinear Fourier integral operators with certain non-degenerate phase functions is proved, which is a bilinear version of Seeger, Sogge, and Stein’s theorem concerning the <span>\\(L^p\\)</span> boundedness of Fourier integral operators. Our result gives an improvement of the result of Rodríguez-López, Rule, and Staubach proved in 2014.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimates for a certain bilinear Fourier integral operator\",\"authors\":\"Tomoya Kato, Akihiko Miyachi, Naohito Tomita\",\"doi\":\"10.1007/s11868-024-00631-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The boundedness of bilinear Fourier integral operators with certain non-degenerate phase functions is proved, which is a bilinear version of Seeger, Sogge, and Stein’s theorem concerning the <span>\\\\(L^p\\\\)</span> boundedness of Fourier integral operators. Our result gives an improvement of the result of Rodríguez-López, Rule, and Staubach proved in 2014.</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00631-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00631-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了具有某些非退化相函数的双线性傅里叶积分算子的有界性,这是 Seeger、Sogge 和 Stein 关于傅里叶积分算子的 \(L^p\) 有界性定理的双线性版本。我们的结果改进了罗德里格斯-洛佩斯、鲁尔和斯托巴赫在 2014 年证明的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates for a certain bilinear Fourier integral operator

The boundedness of bilinear Fourier integral operators with certain non-degenerate phase functions is proved, which is a bilinear version of Seeger, Sogge, and Stein’s theorem concerning the \(L^p\) boundedness of Fourier integral operators. Our result gives an improvement of the result of Rodríguez-López, Rule, and Staubach proved in 2014.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信