与球准巴拿赫函数空间相关的局部哈代空间上的伪微分算子

IF 0.9 3区 数学 Q2 MATHEMATICS
Xinyu Chen, Jian Tan
{"title":"与球准巴拿赫函数空间相关的局部哈代空间上的伪微分算子","authors":"Xinyu Chen, Jian Tan","doi":"10.1007/s11868-024-00633-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a ball quasi-Banach function space on <span>\\({\\mathbb {R}}^{n}\\)</span> and <span>\\(h_{X}({\\mathbb {R}}^{n})\\)</span> the local Hardy space associated with <i>X</i>. In this paper, under some reasonable assumptions on both <i>X</i> and another ball quasi-Banach function space <i>Y</i>, we aim to derive the boundedness of pseudo-differential operators with symbols in <span>\\(S^{-\\alpha }_{1,\\delta }\\)</span> from <span>\\(h_{X}({\\mathbb {R}}^{n})\\)</span> to <span>\\(h_{Y}({\\mathbb {R}}^{n})\\)</span> via applying the extrapolation theorem. In order to prove this result, we also establish the infinite and finite atomic decompositions for the weighted local Hardy space <span>\\(h^{p}_{\\omega }({\\mathbb {R}}^{n})\\)</span> and obtain the mapping property of the above pseudo-differential operators from <span>\\(h^{p}_{\\omega ^{p}}({\\mathbb {R}}^{n})\\)</span> to <span>\\(h^{q}_{\\omega ^{q}}({\\mathbb {R}}^{n})\\)</span>. Moreover, the above results have a wide range of generality. For example, they can be applied to the variable Lebesgue space, the Lorentz space, the mixed-norm Lebesgue space, the local generalized Herz space and the mixed Herz space.\n</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-differential operators on local Hardy spaces associated with ball quasi-Banach function spaces\",\"authors\":\"Xinyu Chen, Jian Tan\",\"doi\":\"10.1007/s11868-024-00633-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> be a ball quasi-Banach function space on <span>\\\\({\\\\mathbb {R}}^{n}\\\\)</span> and <span>\\\\(h_{X}({\\\\mathbb {R}}^{n})\\\\)</span> the local Hardy space associated with <i>X</i>. In this paper, under some reasonable assumptions on both <i>X</i> and another ball quasi-Banach function space <i>Y</i>, we aim to derive the boundedness of pseudo-differential operators with symbols in <span>\\\\(S^{-\\\\alpha }_{1,\\\\delta }\\\\)</span> from <span>\\\\(h_{X}({\\\\mathbb {R}}^{n})\\\\)</span> to <span>\\\\(h_{Y}({\\\\mathbb {R}}^{n})\\\\)</span> via applying the extrapolation theorem. In order to prove this result, we also establish the infinite and finite atomic decompositions for the weighted local Hardy space <span>\\\\(h^{p}_{\\\\omega }({\\\\mathbb {R}}^{n})\\\\)</span> and obtain the mapping property of the above pseudo-differential operators from <span>\\\\(h^{p}_{\\\\omega ^{p}}({\\\\mathbb {R}}^{n})\\\\)</span> to <span>\\\\(h^{q}_{\\\\omega ^{q}}({\\\\mathbb {R}}^{n})\\\\)</span>. Moreover, the above results have a wide range of generality. For example, they can be applied to the variable Lebesgue space, the Lorentz space, the mixed-norm Lebesgue space, the local generalized Herz space and the mixed Herz space.\\n</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00633-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00633-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 X 是 \({\mathbb {R}}^{n}\) 上的球准巴纳赫函数空间,且 \(h_{X}({\mathbb {R}}^{n})\ 是与 X 相关的局部哈代空间。在本文中,在对 X 和另一个球准巴纳赫函数空间 Y 的一些合理假设下,我们旨在通过应用外推定理,从 \(h_{X}({\mathbb {R}}^{n})\ 到 \(h_{Y}({\mathbb {R}}^{n})\ 得出符号在 \(S^{-\alpha }_{1,\delta }\) 中的伪微分算子的有界性。为了证明这一结果、我们还建立了加权局部哈代空间 \(h^{p}_{\omega }({\mathbb {R}}^{n})\ 的无限和有限原子分解,并得到了上述伪微分算子从 \(h^{p}_{\omega }({\mathbb {R}}^{n})\ 出发的映射性质。微分算子从 \(h^{p}_{\omega ^{p}}({\mathbb {R}}^{n})\) 到 \(h^{q}_{\omega ^{q}}({\mathbb {R}}^{n})\) 的映射性质。此外,上述结果具有广泛的通用性。例如,它们可以应用于可变勒贝格空间、洛伦兹空间、混合规范勒贝格空间、局部广义赫兹空间和混合赫兹空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudo-differential operators on local Hardy spaces associated with ball quasi-Banach function spaces

Let X be a ball quasi-Banach function space on \({\mathbb {R}}^{n}\) and \(h_{X}({\mathbb {R}}^{n})\) the local Hardy space associated with X. In this paper, under some reasonable assumptions on both X and another ball quasi-Banach function space Y, we aim to derive the boundedness of pseudo-differential operators with symbols in \(S^{-\alpha }_{1,\delta }\) from \(h_{X}({\mathbb {R}}^{n})\) to \(h_{Y}({\mathbb {R}}^{n})\) via applying the extrapolation theorem. In order to prove this result, we also establish the infinite and finite atomic decompositions for the weighted local Hardy space \(h^{p}_{\omega }({\mathbb {R}}^{n})\) and obtain the mapping property of the above pseudo-differential operators from \(h^{p}_{\omega ^{p}}({\mathbb {R}}^{n})\) to \(h^{q}_{\omega ^{q}}({\mathbb {R}}^{n})\). Moreover, the above results have a wide range of generality. For example, they can be applied to the variable Lebesgue space, the Lorentz space, the mixed-norm Lebesgue space, the local generalized Herz space and the mixed Herz space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信