Longyu Dong, Dejun Liu, Youqiang Dong, Bongrae Park, Zhibo Wan
{"title":"利用相邻网格对激光雷达点云进行高效地面分割的方法","authors":"Longyu Dong, Dejun Liu, Youqiang Dong, Bongrae Park, Zhibo Wan","doi":"10.1007/s00138-024-01593-5","DOIUrl":null,"url":null,"abstract":"<p>Ground segmentation is crucial for guiding mobile robots and identifying nearby objects. However, it should be noted that the ground often presents complex topographical features, such as slopes and rugged terrains, which significantly increase the challenges associated with accurate ground segmentation tasks. To address this issue, we propose a novel approach to achieve rapid ground segmentation. The proposed method uses a multi-partition approach to extract ground points for each partition, followed by assessing the correction plane based on geometric characteristics of the ground surface and similarity among adjacent planes. An adaptive threshold is also introduced to enhance efficiency in extracting complex urban pavement. Our method was benchmarked against several contemporary techniques on the SemanticKITTI dataset. The precision was elevated by 1.72<span>\\(\\%\\)</span>, and the precision deviation was diminished by 1.02<span>\\(\\%\\)</span>, culminating in the most accurate and robust outcomes among the evaluated methods.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"142 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient ground segmentation approach for LiDAR point cloud utilizing adjacent grids\",\"authors\":\"Longyu Dong, Dejun Liu, Youqiang Dong, Bongrae Park, Zhibo Wan\",\"doi\":\"10.1007/s00138-024-01593-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ground segmentation is crucial for guiding mobile robots and identifying nearby objects. However, it should be noted that the ground often presents complex topographical features, such as slopes and rugged terrains, which significantly increase the challenges associated with accurate ground segmentation tasks. To address this issue, we propose a novel approach to achieve rapid ground segmentation. The proposed method uses a multi-partition approach to extract ground points for each partition, followed by assessing the correction plane based on geometric characteristics of the ground surface and similarity among adjacent planes. An adaptive threshold is also introduced to enhance efficiency in extracting complex urban pavement. Our method was benchmarked against several contemporary techniques on the SemanticKITTI dataset. The precision was elevated by 1.72<span>\\\\(\\\\%\\\\)</span>, and the precision deviation was diminished by 1.02<span>\\\\(\\\\%\\\\)</span>, culminating in the most accurate and robust outcomes among the evaluated methods.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01593-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01593-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An efficient ground segmentation approach for LiDAR point cloud utilizing adjacent grids
Ground segmentation is crucial for guiding mobile robots and identifying nearby objects. However, it should be noted that the ground often presents complex topographical features, such as slopes and rugged terrains, which significantly increase the challenges associated with accurate ground segmentation tasks. To address this issue, we propose a novel approach to achieve rapid ground segmentation. The proposed method uses a multi-partition approach to extract ground points for each partition, followed by assessing the correction plane based on geometric characteristics of the ground surface and similarity among adjacent planes. An adaptive threshold is also introduced to enhance efficiency in extracting complex urban pavement. Our method was benchmarked against several contemporary techniques on the SemanticKITTI dataset. The precision was elevated by 1.72\(\%\), and the precision deviation was diminished by 1.02\(\%\), culminating in the most accurate and robust outcomes among the evaluated methods.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.