量子微积分的广义化和相应的赫米特-哈达马德不等式

IF 1.4 3区 数学 Q1 MATHEMATICS
Saira Bano Akbar, Mujahid Abbas, Hüseyin Budak
{"title":"量子微积分的广义化和相应的赫米特-哈达马德不等式","authors":"Saira Bano Akbar,&nbsp;Mujahid Abbas,&nbsp;Hüseyin Budak","doi":"10.1007/s13324-024-00960-9","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is first to introduce generalizations of quantum integrals and derivatives which are called <span>\\((\\phi \\,-\\,h)\\)</span> integrals and <span>\\((\\phi \\,-\\,h)\\)</span> derivatives, respectively. Then we investigate some implicit integral inequalities for <span>\\((\\phi \\,-\\,h)\\)</span> integrals. Different classes of convex functions are used to prove these inequalities for symmetric functions. Under certain assumptions, Hermite–Hadamard-type inequalities for <i>q</i>-integrals are deduced. The results presented herein are applicable to convex, <i>m</i>-convex, and <span>\\(\\hbar \\)</span>-convex functions defined on the non-negative part of the real line.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-00960-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalization of quantum calculus and corresponding Hermite–Hadamard inequalities\",\"authors\":\"Saira Bano Akbar,&nbsp;Mujahid Abbas,&nbsp;Hüseyin Budak\",\"doi\":\"10.1007/s13324-024-00960-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is first to introduce generalizations of quantum integrals and derivatives which are called <span>\\\\((\\\\phi \\\\,-\\\\,h)\\\\)</span> integrals and <span>\\\\((\\\\phi \\\\,-\\\\,h)\\\\)</span> derivatives, respectively. Then we investigate some implicit integral inequalities for <span>\\\\((\\\\phi \\\\,-\\\\,h)\\\\)</span> integrals. Different classes of convex functions are used to prove these inequalities for symmetric functions. Under certain assumptions, Hermite–Hadamard-type inequalities for <i>q</i>-integrals are deduced. The results presented herein are applicable to convex, <i>m</i>-convex, and <span>\\\\(\\\\hbar \\\\)</span>-convex functions defined on the non-negative part of the real line.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-024-00960-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00960-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00960-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的首先是介绍量子积分和导数的广义,它们分别被称为((\phi \,-\,h))积分和((\phi \,-\,h))导数。然后我们研究了 \((\phi\,-\,h)\) 积分的一些隐式积分不等式。我们用不同类的凸函数来证明这些对称函数的不等式。在某些假设条件下,推导出了 q 积分的 Hermite-Hadamard 型不等式。本文提出的结果适用于定义在实线非负部分上的凸、m-凸和\(\hbar \)-凸函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization of quantum calculus and corresponding Hermite–Hadamard inequalities

The aim of this paper is first to introduce generalizations of quantum integrals and derivatives which are called \((\phi \,-\,h)\) integrals and \((\phi \,-\,h)\) derivatives, respectively. Then we investigate some implicit integral inequalities for \((\phi \,-\,h)\) integrals. Different classes of convex functions are used to prove these inequalities for symmetric functions. Under certain assumptions, Hermite–Hadamard-type inequalities for q-integrals are deduced. The results presented herein are applicable to convex, m-convex, and \(\hbar \)-convex functions defined on the non-negative part of the real line.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信