识别肺癌蛋白质组数据中翻译后修饰的交叉关系

bioRxiv Pub Date : 2024-08-08 DOI:10.1101/2024.08.06.606765
Shengzhi Lai, Shuaijian Dai, Peize Zhao, Chen Zhou, Ning Li, Weichuan Yu
{"title":"识别肺癌蛋白质组数据中翻译后修饰的交叉关系","authors":"Shengzhi Lai, Shuaijian Dai, Peize Zhao, Chen Zhou, Ning Li, Weichuan Yu","doi":"10.1101/2024.08.06.606765","DOIUrl":null,"url":null,"abstract":"In a lung squamous cell carcinoma data set containing over 20 million tandem mass spectra, we identified 860 peptides with post-translational modifications (PTMs) that were significantly upregulated in lung cancer samples as compared to normal samples using our new search engine named PIPI3. Among the modified peptides related to upregulated gene ontology terms, about 50% carried multiple PTMs. PIPI3 demonstrated its enabling power to provide insight into PTM crosstalk research.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying crosstalks among post-translational modifications in lung cancer proteomic data\",\"authors\":\"Shengzhi Lai, Shuaijian Dai, Peize Zhao, Chen Zhou, Ning Li, Weichuan Yu\",\"doi\":\"10.1101/2024.08.06.606765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a lung squamous cell carcinoma data set containing over 20 million tandem mass spectra, we identified 860 peptides with post-translational modifications (PTMs) that were significantly upregulated in lung cancer samples as compared to normal samples using our new search engine named PIPI3. Among the modified peptides related to upregulated gene ontology terms, about 50% carried multiple PTMs. PIPI3 demonstrated its enabling power to provide insight into PTM crosstalk research.\",\"PeriodicalId\":505198,\"journal\":{\"name\":\"bioRxiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.06.606765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.06.606765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一个包含两千多万条串联质谱的肺鳞癌数据集中,我们使用名为PIPI3的新搜索引擎发现了860个具有翻译后修饰(PTM)的肽段,与正常样本相比,这些肽段在肺癌样本中显著上调。在与上调基因本体术语相关的修饰肽段中,约50%带有多个PTM。PIPI3证明了它在PTM串扰研究中的强大洞察力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying crosstalks among post-translational modifications in lung cancer proteomic data
In a lung squamous cell carcinoma data set containing over 20 million tandem mass spectra, we identified 860 peptides with post-translational modifications (PTMs) that were significantly upregulated in lung cancer samples as compared to normal samples using our new search engine named PIPI3. Among the modified peptides related to upregulated gene ontology terms, about 50% carried multiple PTMs. PIPI3 demonstrated its enabling power to provide insight into PTM crosstalk research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信