利用六旋翼无人机整合致动器容错控制和基于深度学习的 NDVI 估值,实现精准农业

Gerardo Ortíz-Torres, Manuel A. Zurita-Gil, J. Y. Rumbo-Morales, F. Sorcia-Vázquez, José J. Gascon Avalos, Alan F. Pérez-Vidal, Moises B. Ramos-Martínez, Eric Martínez Pascual, Mario A. Juárez
{"title":"利用六旋翼无人机整合致动器容错控制和基于深度学习的 NDVI 估值,实现精准农业","authors":"Gerardo Ortíz-Torres, Manuel A. Zurita-Gil, J. Y. Rumbo-Morales, F. Sorcia-Vázquez, José J. Gascon Avalos, Alan F. Pérez-Vidal, Moises B. Ramos-Martínez, Eric Martínez Pascual, Mario A. Juárez","doi":"10.3390/agriengineering6030161","DOIUrl":null,"url":null,"abstract":"This paper presents an actuator fault-tolerant control (FTC) strategy for a hexacopter unmanned aerial vehicle (UAV) designed specifically for precision agriculture applications. The proposed approach integrates advanced sensing techniques, including the estimation of Near-Infrared (NIR) reflectance from RGB imagery using the Pix2Pix deep learning network based on conditional Generative Adversarial Networks (cGANs), to enable the calculation of the Normalized Difference Vegetation Index (NDVI) for health assessment. Additionally, trajectory flight planning is developed to ensure the efficient coverage of the targeted agricultural area while considering the vehicle’s dynamics and fault-tolerant capabilities, even in the case of total actuator failures. The effectiveness of the proposed system is validated through simulations and real-world experiments, demonstrating its potential for reliable and accurate data collection in precision agriculture. An NDVI test was conducted on a sugarcane crop using the estimated NIR to assess the crop’s condition during its tillering stage. Therefore, the main contributions this paper include (i) the development of an actuator FTC strategy for a hexacopter UAV in precision agriculture applications, integrating advanced sensing techniques such as NIR reflectance estimation using deep learning network; (ii) the design of a flight trajectory planning method ensuring the efficient coverage of the targeted agricultural area, considering the vehicle’s dynamics and fault-tolerant capabilities; (iii) the validation of the proposed system through simulations and real-world experiments; and (iv) the successful integration of FTC scheme, advanced sensing, and flight trajectory planning for reliable and accurate data collection in precision agriculture.","PeriodicalId":7846,"journal":{"name":"AgriEngineering","volume":"49 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Actuator Fault-Tolerant Control and Deep-Learning-Based NDVI Estimation for Precision Agriculture with a Hexacopter UAV\",\"authors\":\"Gerardo Ortíz-Torres, Manuel A. Zurita-Gil, J. Y. Rumbo-Morales, F. Sorcia-Vázquez, José J. Gascon Avalos, Alan F. Pérez-Vidal, Moises B. Ramos-Martínez, Eric Martínez Pascual, Mario A. Juárez\",\"doi\":\"10.3390/agriengineering6030161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an actuator fault-tolerant control (FTC) strategy for a hexacopter unmanned aerial vehicle (UAV) designed specifically for precision agriculture applications. The proposed approach integrates advanced sensing techniques, including the estimation of Near-Infrared (NIR) reflectance from RGB imagery using the Pix2Pix deep learning network based on conditional Generative Adversarial Networks (cGANs), to enable the calculation of the Normalized Difference Vegetation Index (NDVI) for health assessment. Additionally, trajectory flight planning is developed to ensure the efficient coverage of the targeted agricultural area while considering the vehicle’s dynamics and fault-tolerant capabilities, even in the case of total actuator failures. The effectiveness of the proposed system is validated through simulations and real-world experiments, demonstrating its potential for reliable and accurate data collection in precision agriculture. An NDVI test was conducted on a sugarcane crop using the estimated NIR to assess the crop’s condition during its tillering stage. Therefore, the main contributions this paper include (i) the development of an actuator FTC strategy for a hexacopter UAV in precision agriculture applications, integrating advanced sensing techniques such as NIR reflectance estimation using deep learning network; (ii) the design of a flight trajectory planning method ensuring the efficient coverage of the targeted agricultural area, considering the vehicle’s dynamics and fault-tolerant capabilities; (iii) the validation of the proposed system through simulations and real-world experiments; and (iv) the successful integration of FTC scheme, advanced sensing, and flight trajectory planning for reliable and accurate data collection in precision agriculture.\",\"PeriodicalId\":7846,\"journal\":{\"name\":\"AgriEngineering\",\"volume\":\"49 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriengineering6030161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriengineering6030161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对专为精准农业应用设计的六旋翼无人飞行器(UAV)提出了一种致动器容错控制(FTC)策略。所提出的方法集成了先进的传感技术,包括利用基于条件生成对抗网络(cGANs)的 Pix2Pix 深度学习网络,从 RGB 图像中估算近红外(NIR)反射率,从而计算归一化植被指数(NDVI),进行健康评估。此外,还制定了轨迹飞行规划,以确保有效覆盖目标农业区,同时考虑到飞行器的动态性和容错能力,即使在致动器完全失效的情况下也是如此。通过模拟和实际实验验证了所提系统的有效性,证明了其在精准农业领域进行可靠、准确数据收集的潜力。利用估算的近红外对甘蔗作物进行了 NDVI 测试,以评估作物在分蘖期的状况。因此,本文的主要贡献包括:(i) 为精准农业应用中的六旋翼无人机开发致动器 FTC 战略,集成了先进的传感技术,如利用深度学习网络进行近红外反射率估算;(ii) 设计一种飞行轨迹规划方法,确保有效覆盖目标农业区域,同时考虑飞行器的动态特性和容错能力;(iii) 通过模拟和实际实验验证所提出的系统;以及 (iv) 成功整合 FTC 方案、先进传感和飞行轨迹规划,为精准农业提供可靠、准确的数据采集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Actuator Fault-Tolerant Control and Deep-Learning-Based NDVI Estimation for Precision Agriculture with a Hexacopter UAV
This paper presents an actuator fault-tolerant control (FTC) strategy for a hexacopter unmanned aerial vehicle (UAV) designed specifically for precision agriculture applications. The proposed approach integrates advanced sensing techniques, including the estimation of Near-Infrared (NIR) reflectance from RGB imagery using the Pix2Pix deep learning network based on conditional Generative Adversarial Networks (cGANs), to enable the calculation of the Normalized Difference Vegetation Index (NDVI) for health assessment. Additionally, trajectory flight planning is developed to ensure the efficient coverage of the targeted agricultural area while considering the vehicle’s dynamics and fault-tolerant capabilities, even in the case of total actuator failures. The effectiveness of the proposed system is validated through simulations and real-world experiments, demonstrating its potential for reliable and accurate data collection in precision agriculture. An NDVI test was conducted on a sugarcane crop using the estimated NIR to assess the crop’s condition during its tillering stage. Therefore, the main contributions this paper include (i) the development of an actuator FTC strategy for a hexacopter UAV in precision agriculture applications, integrating advanced sensing techniques such as NIR reflectance estimation using deep learning network; (ii) the design of a flight trajectory planning method ensuring the efficient coverage of the targeted agricultural area, considering the vehicle’s dynamics and fault-tolerant capabilities; (iii) the validation of the proposed system through simulations and real-world experiments; and (iv) the successful integration of FTC scheme, advanced sensing, and flight trajectory planning for reliable and accurate data collection in precision agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信