含 LILRB1 D1D2 的强效抗体可抑制 RIFIN 介导的免疫逃避行为

bioRxiv Pub Date : 2024-08-08 DOI:10.1101/2024.08.08.607148
Yizhuo Wang, Hengfang Tang, Wanxue Wang, Ming Li, Chenchen Zhu, Han Dai, Hongxin Zhao, Bo Wu, Junfeng Wang
{"title":"含 LILRB1 D1D2 的强效抗体可抑制 RIFIN 介导的免疫逃避行为","authors":"Yizhuo Wang, Hengfang Tang, Wanxue Wang, Ming Li, Chenchen Zhu, Han Dai, Hongxin Zhao, Bo Wu, Junfeng Wang","doi":"10.1101/2024.08.08.607148","DOIUrl":null,"url":null,"abstract":"Variant surface antigens of Plasmodium falciparum, including RIFIN, play a pivotal role in malaria pathogenesis and facilitate immune evasion by binding to immunoinhibitory receptors such as LILRB1. Recently, receptor-containing antibodies have been discovered in malaria-exposed individuals and uncover a novel antibody mechanism in inhibiting immune evasions of Plasmodium falciparum. Previous studies have identified several LAIR1– and LILRB1 D3D4-containing antibodies. However, no antibodies containing LILRB1-D1D2 have been identified, even though some RIFINs interact with LILRB1-D1D2. In this study, we propose a in vitro strategy for the generation of this type of antibodies by employing structure-based affinity maturation. Using this strategy, we successfully generated D1D2.v-IgG, an antibody that effectively blocks the specific binding of RIFIN#1 (from PF3D7_1254800) to LILRB1. Furthermore, we developed NK-biAb, a bispecific antibody targeting RIFIN#1 and the NKG2D receptor based on D1D2.v-IgG. Both antibodies demonstrate promising results in augmenting NK cell-mediated cytotoxicity against RIFIN#1-expressing K562 cells, with NK-biAb exhibiting superior efficacy. The present strategy could be generally used for developing antibodies against the malarial parasite-host interactions, thereby facilitating advancements in malaria treatments and vaccines.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potent LILRB1 D1D2-containing antibodies inhibit RIFIN-mediated immune evasions\",\"authors\":\"Yizhuo Wang, Hengfang Tang, Wanxue Wang, Ming Li, Chenchen Zhu, Han Dai, Hongxin Zhao, Bo Wu, Junfeng Wang\",\"doi\":\"10.1101/2024.08.08.607148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variant surface antigens of Plasmodium falciparum, including RIFIN, play a pivotal role in malaria pathogenesis and facilitate immune evasion by binding to immunoinhibitory receptors such as LILRB1. Recently, receptor-containing antibodies have been discovered in malaria-exposed individuals and uncover a novel antibody mechanism in inhibiting immune evasions of Plasmodium falciparum. Previous studies have identified several LAIR1– and LILRB1 D3D4-containing antibodies. However, no antibodies containing LILRB1-D1D2 have been identified, even though some RIFINs interact with LILRB1-D1D2. In this study, we propose a in vitro strategy for the generation of this type of antibodies by employing structure-based affinity maturation. Using this strategy, we successfully generated D1D2.v-IgG, an antibody that effectively blocks the specific binding of RIFIN#1 (from PF3D7_1254800) to LILRB1. Furthermore, we developed NK-biAb, a bispecific antibody targeting RIFIN#1 and the NKG2D receptor based on D1D2.v-IgG. Both antibodies demonstrate promising results in augmenting NK cell-mediated cytotoxicity against RIFIN#1-expressing K562 cells, with NK-biAb exhibiting superior efficacy. The present strategy could be generally used for developing antibodies against the malarial parasite-host interactions, thereby facilitating advancements in malaria treatments and vaccines.\",\"PeriodicalId\":505198,\"journal\":{\"name\":\"bioRxiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.08.607148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.08.607148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

恶性疟原虫的变异表面抗原(包括 RIFIN)在疟疾发病机制中起着关键作用,并通过与免疫抑制受体(如 LILRB1)结合促进免疫逃避。最近,在疟疾暴露个体中发现了含有受体的抗体,并揭示了一种抑制恶性疟原虫免疫逃避的新型抗体机制。之前的研究已经发现了几种含 LAIR1 和 LILRB1 D3D4 的抗体。然而,尽管一些 RIFIN 与 LILRB1-D1D2 有相互作用,但尚未发现含有 LILRB1-D1D2 的抗体。在这项研究中,我们提出了一种通过基于结构的亲和力成熟来生成这类抗体的体外策略。利用这种策略,我们成功地生成了 D1D2.v-IgG 抗体,它能有效阻断 RIFIN#1 (来自 PF3D7_1254800)与 LILRB1 的特异性结合。此外,我们还在 D1D2.v-IgG 的基础上开发了一种靶向 RIFIN#1 和 NKG2D 受体的双特异性抗体 NK-biAb。这两种抗体在增强 NK 细胞介导的对表达 RIFIN#1 的 K562 细胞的细胞毒性方面都表现出了良好的效果,其中 NK-biAb 的疗效更好。本策略可普遍用于开发针对疟原虫-宿主相互作用的抗体,从而促进疟疾治疗和疫苗的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potent LILRB1 D1D2-containing antibodies inhibit RIFIN-mediated immune evasions
Variant surface antigens of Plasmodium falciparum, including RIFIN, play a pivotal role in malaria pathogenesis and facilitate immune evasion by binding to immunoinhibitory receptors such as LILRB1. Recently, receptor-containing antibodies have been discovered in malaria-exposed individuals and uncover a novel antibody mechanism in inhibiting immune evasions of Plasmodium falciparum. Previous studies have identified several LAIR1– and LILRB1 D3D4-containing antibodies. However, no antibodies containing LILRB1-D1D2 have been identified, even though some RIFINs interact with LILRB1-D1D2. In this study, we propose a in vitro strategy for the generation of this type of antibodies by employing structure-based affinity maturation. Using this strategy, we successfully generated D1D2.v-IgG, an antibody that effectively blocks the specific binding of RIFIN#1 (from PF3D7_1254800) to LILRB1. Furthermore, we developed NK-biAb, a bispecific antibody targeting RIFIN#1 and the NKG2D receptor based on D1D2.v-IgG. Both antibodies demonstrate promising results in augmenting NK cell-mediated cytotoxicity against RIFIN#1-expressing K562 cells, with NK-biAb exhibiting superior efficacy. The present strategy could be generally used for developing antibodies against the malarial parasite-host interactions, thereby facilitating advancements in malaria treatments and vaccines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信