基于机器学习的网络聊天中网络欺凌检测策略

Victor Ojodomo Akoh, Fati Oiza Ochepa
{"title":"基于机器学习的网络聊天中网络欺凌检测策略","authors":"Victor Ojodomo Akoh, Fati Oiza Ochepa","doi":"10.38124/ijisrt/ijisrt24jul1058","DOIUrl":null,"url":null,"abstract":"This study employed the stacking of three machine learning techniques: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Logistic Regression algorithms to develop a model for detecting cyberbullying using a post dataset acquired from the X Platform. The proposed model's task is to extract keywords from the post dataset and then classify them as either 1 (\"cyberbullying word\") or 0 (\"not cyberbullying word\"). The model generated an accuracy of 85.52%, and it was deployed using a simple Graphical User Interface (GUI) web application. This study recommends that the model be included on social media platforms to help reduce the growing use of cyberbullying phrases.","PeriodicalId":517644,"journal":{"name":"International Journal of Innovative Science and Research Technology (IJISRT)","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Strategies for Detecting Cyberbullying in Online Chats\",\"authors\":\"Victor Ojodomo Akoh, Fati Oiza Ochepa\",\"doi\":\"10.38124/ijisrt/ijisrt24jul1058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study employed the stacking of three machine learning techniques: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Logistic Regression algorithms to develop a model for detecting cyberbullying using a post dataset acquired from the X Platform. The proposed model's task is to extract keywords from the post dataset and then classify them as either 1 (\\\"cyberbullying word\\\") or 0 (\\\"not cyberbullying word\\\"). The model generated an accuracy of 85.52%, and it was deployed using a simple Graphical User Interface (GUI) web application. This study recommends that the model be included on social media platforms to help reduce the growing use of cyberbullying phrases.\",\"PeriodicalId\":517644,\"journal\":{\"name\":\"International Journal of Innovative Science and Research Technology (IJISRT)\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Innovative Science and Research Technology (IJISRT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38124/ijisrt/ijisrt24jul1058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Science and Research Technology (IJISRT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38124/ijisrt/ijisrt24jul1058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用了三种机器学习技术:支持向量机 (SVM)、K-近邻 (KNN) 和逻辑回归算法,利用从 X 平台获取的帖子数据集开发了一个用于检测网络欺凌的模型。该模型的任务是从帖子数据集中提取关键词,然后将其分类为 1("网络欺凌词")或 0("非网络欺凌词")。该模型的准确率为 85.52%,使用一个简单的图形用户界面 (GUI) 网络应用程序进行部署。本研究建议将该模型纳入社交媒体平台,以帮助减少日益增多的网络欺凌短语的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Based Strategies for Detecting Cyberbullying in Online Chats
This study employed the stacking of three machine learning techniques: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Logistic Regression algorithms to develop a model for detecting cyberbullying using a post dataset acquired from the X Platform. The proposed model's task is to extract keywords from the post dataset and then classify them as either 1 ("cyberbullying word") or 0 ("not cyberbullying word"). The model generated an accuracy of 85.52%, and it was deployed using a simple Graphical User Interface (GUI) web application. This study recommends that the model be included on social media platforms to help reduce the growing use of cyberbullying phrases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信