Hao Ye, J. Zang, Jiawei Zhu, D. Arx, Vitaly Pustovalov, Minmin Mao, Qiao Tang, Andrea Veciana, Harun Torlakcik, Elric Zhang, S. Sevim, R. Sanchis-Gual, Xiang-Zhong Chen, Daniel Ahmed, M. V. Sanchez-Vives, Josep Puigmartí‐Luis, Bradley J. Nelson, S. Neuhauss, Salvador Pané
{"title":"用于脊髓损伤再生的磁电微型机器人","authors":"Hao Ye, J. Zang, Jiawei Zhu, D. Arx, Vitaly Pustovalov, Minmin Mao, Qiao Tang, Andrea Veciana, Harun Torlakcik, Elric Zhang, S. Sevim, R. Sanchis-Gual, Xiang-Zhong Chen, Daniel Ahmed, M. V. Sanchez-Vives, Josep Puigmartí‐Luis, Bradley J. Nelson, S. Neuhauss, Salvador Pané","doi":"10.1101/2024.08.06.606378","DOIUrl":null,"url":null,"abstract":"Regenerative medicine continually seeks effective methods to address spinal cord injuries (SCI), which are known for their limited regenerative potential. Despite advances in neural progenitor cell (NPC) transplants for spinal cord injuries, challenges related to graft survival, reliable in vivo differentiation, and neural integration significantly hinder real functional recovery and limit clinical outcomes. This study introduces ‘NPCbots’, biohybrid microrobots engineered by integrating human-induced pluripotent stem cell-derived NPCs with magnetoelectric nanoparticles composed of cobalt ferrite-barium titanate. These enable magnetic navigation and neuronal stimulation, enhancing targeted therapeutic interventions. Our lab-on-a-chip system allows for the mass production of NPCbots, ensuring their differentiation and biocompatibility. Remarkably, in a zebrafish model of SCI, NPCbots stimulated by an alternating magnetic field demonstrated rapid in vivo differentiation and integration into damaged neural pathways, significantly enhancing neural regeneration. Within three days, injured zebrafish treated with NPCbots exhibited almost normal swimming behavior and significantly improved exploratory behavior, showcasing the potential of NPCbots to swiftly repair neural structures and restore the central nervous system’s functionality in spinal cord injury models through non-invasive means. Additionally, precise in vitro and in vivo manipulation of NPCbots indicates their broader application in various neurodegenerative disorders, offering a promising route for effective spinal cord and neurological recovery.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetoelectric Microrobots for Spinal Cord Injury Regeneration\",\"authors\":\"Hao Ye, J. Zang, Jiawei Zhu, D. Arx, Vitaly Pustovalov, Minmin Mao, Qiao Tang, Andrea Veciana, Harun Torlakcik, Elric Zhang, S. Sevim, R. Sanchis-Gual, Xiang-Zhong Chen, Daniel Ahmed, M. V. Sanchez-Vives, Josep Puigmartí‐Luis, Bradley J. Nelson, S. Neuhauss, Salvador Pané\",\"doi\":\"10.1101/2024.08.06.606378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regenerative medicine continually seeks effective methods to address spinal cord injuries (SCI), which are known for their limited regenerative potential. Despite advances in neural progenitor cell (NPC) transplants for spinal cord injuries, challenges related to graft survival, reliable in vivo differentiation, and neural integration significantly hinder real functional recovery and limit clinical outcomes. This study introduces ‘NPCbots’, biohybrid microrobots engineered by integrating human-induced pluripotent stem cell-derived NPCs with magnetoelectric nanoparticles composed of cobalt ferrite-barium titanate. These enable magnetic navigation and neuronal stimulation, enhancing targeted therapeutic interventions. Our lab-on-a-chip system allows for the mass production of NPCbots, ensuring their differentiation and biocompatibility. Remarkably, in a zebrafish model of SCI, NPCbots stimulated by an alternating magnetic field demonstrated rapid in vivo differentiation and integration into damaged neural pathways, significantly enhancing neural regeneration. Within three days, injured zebrafish treated with NPCbots exhibited almost normal swimming behavior and significantly improved exploratory behavior, showcasing the potential of NPCbots to swiftly repair neural structures and restore the central nervous system’s functionality in spinal cord injury models through non-invasive means. Additionally, precise in vitro and in vivo manipulation of NPCbots indicates their broader application in various neurodegenerative disorders, offering a promising route for effective spinal cord and neurological recovery.\",\"PeriodicalId\":505198,\"journal\":{\"name\":\"bioRxiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.06.606378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.06.606378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetoelectric Microrobots for Spinal Cord Injury Regeneration
Regenerative medicine continually seeks effective methods to address spinal cord injuries (SCI), which are known for their limited regenerative potential. Despite advances in neural progenitor cell (NPC) transplants for spinal cord injuries, challenges related to graft survival, reliable in vivo differentiation, and neural integration significantly hinder real functional recovery and limit clinical outcomes. This study introduces ‘NPCbots’, biohybrid microrobots engineered by integrating human-induced pluripotent stem cell-derived NPCs with magnetoelectric nanoparticles composed of cobalt ferrite-barium titanate. These enable magnetic navigation and neuronal stimulation, enhancing targeted therapeutic interventions. Our lab-on-a-chip system allows for the mass production of NPCbots, ensuring their differentiation and biocompatibility. Remarkably, in a zebrafish model of SCI, NPCbots stimulated by an alternating magnetic field demonstrated rapid in vivo differentiation and integration into damaged neural pathways, significantly enhancing neural regeneration. Within three days, injured zebrafish treated with NPCbots exhibited almost normal swimming behavior and significantly improved exploratory behavior, showcasing the potential of NPCbots to swiftly repair neural structures and restore the central nervous system’s functionality in spinal cord injury models through non-invasive means. Additionally, precise in vitro and in vivo manipulation of NPCbots indicates their broader application in various neurodegenerative disorders, offering a promising route for effective spinal cord and neurological recovery.