{"title":"基于并行处理模式和架构的高效精确地基合成孔径雷达(GB-SAR)实时成像方案","authors":"Yunxin Tan, Guang-si Li, Chun Zhang, Weiming Gan","doi":"10.3390/electronics13163138","DOIUrl":null,"url":null,"abstract":"When performing high-resolution imaging with ground-based synthetic aperture radar (GB-SAR) systems, the data collected and processed are vast and complex, imposing higher demands on the real-time performance and processing efficiency of the imaging system. Yet a very limited number of studies have been conducted on the real-time processing method of GB-SAR monitoring data. This paper proposes a real-time imaging scheme based on parallel processing models, optimizing each step of the traditional ωK imaging algorithm in parallel. Several parallel optimization schemes are proposed for the computationally intensive and complex interpolation part, including dynamic parallelism, the Group-Nstream processing model, and the Fthread-Group-Nstream processing model. The Fthread-Group-Nstream processing model utilizes Fthread, Group, and Nstream for the finer-grained processing of monitoring data, reducing the impact of the nested depth on the algorithm’s performance in dynamic parallelism and alleviating the issue of serial execution within the Group-Nstream processing model. This scheme has been successfully applied in a synthetic aperture radar imaging system, achieving excellent imaging results and accuracy. The speedup ratio can reach 52.14, and the relative errors in amplitude and phase are close to 0, validating the effectiveness and practicality of the proposed schemes. This paper addresses the lack of research on the real-time processing of GB-SAR monitoring data, providing a reliable monitoring method for GB-SAR deformation monitoring.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":"48 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient and Accurate Ground-Based Synthetic Aperture Radar (GB-SAR) Real-Time Imaging Scheme Based on Parallel Processing Mode and Architecture\",\"authors\":\"Yunxin Tan, Guang-si Li, Chun Zhang, Weiming Gan\",\"doi\":\"10.3390/electronics13163138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When performing high-resolution imaging with ground-based synthetic aperture radar (GB-SAR) systems, the data collected and processed are vast and complex, imposing higher demands on the real-time performance and processing efficiency of the imaging system. Yet a very limited number of studies have been conducted on the real-time processing method of GB-SAR monitoring data. This paper proposes a real-time imaging scheme based on parallel processing models, optimizing each step of the traditional ωK imaging algorithm in parallel. Several parallel optimization schemes are proposed for the computationally intensive and complex interpolation part, including dynamic parallelism, the Group-Nstream processing model, and the Fthread-Group-Nstream processing model. The Fthread-Group-Nstream processing model utilizes Fthread, Group, and Nstream for the finer-grained processing of monitoring data, reducing the impact of the nested depth on the algorithm’s performance in dynamic parallelism and alleviating the issue of serial execution within the Group-Nstream processing model. This scheme has been successfully applied in a synthetic aperture radar imaging system, achieving excellent imaging results and accuracy. The speedup ratio can reach 52.14, and the relative errors in amplitude and phase are close to 0, validating the effectiveness and practicality of the proposed schemes. This paper addresses the lack of research on the real-time processing of GB-SAR monitoring data, providing a reliable monitoring method for GB-SAR deformation monitoring.\",\"PeriodicalId\":504598,\"journal\":{\"name\":\"Electronics\",\"volume\":\"48 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13163138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13163138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient and Accurate Ground-Based Synthetic Aperture Radar (GB-SAR) Real-Time Imaging Scheme Based on Parallel Processing Mode and Architecture
When performing high-resolution imaging with ground-based synthetic aperture radar (GB-SAR) systems, the data collected and processed are vast and complex, imposing higher demands on the real-time performance and processing efficiency of the imaging system. Yet a very limited number of studies have been conducted on the real-time processing method of GB-SAR monitoring data. This paper proposes a real-time imaging scheme based on parallel processing models, optimizing each step of the traditional ωK imaging algorithm in parallel. Several parallel optimization schemes are proposed for the computationally intensive and complex interpolation part, including dynamic parallelism, the Group-Nstream processing model, and the Fthread-Group-Nstream processing model. The Fthread-Group-Nstream processing model utilizes Fthread, Group, and Nstream for the finer-grained processing of monitoring data, reducing the impact of the nested depth on the algorithm’s performance in dynamic parallelism and alleviating the issue of serial execution within the Group-Nstream processing model. This scheme has been successfully applied in a synthetic aperture radar imaging system, achieving excellent imaging results and accuracy. The speedup ratio can reach 52.14, and the relative errors in amplitude and phase are close to 0, validating the effectiveness and practicality of the proposed schemes. This paper addresses the lack of research on the real-time processing of GB-SAR monitoring data, providing a reliable monitoring method for GB-SAR deformation monitoring.