利用哨兵 1-2 号卫星和大地遥感卫星 8-9 号卫星监测洪加火山(汤加王国)从 2014/2015 年动乱到 2021/2022 年爆炸的情况

Carla Braitenberg
{"title":"利用哨兵 1-2 号卫星和大地遥感卫星 8-9 号卫星监测洪加火山(汤加王国)从 2014/2015 年动乱到 2021/2022 年爆炸的情况","authors":"Carla Braitenberg","doi":"10.3389/feart.2024.1373539","DOIUrl":null,"url":null,"abstract":"This study explores the dynamic evolution of the Hunga Volcano in the Kingdom of Tonga and covers two volcanic unrests, focusing on the creation and subsequent disappearance of a new island between Hunga Tonga (HT) and Hunga Ha'apai (HH) between 2013 and 2023. The island expanded in 2015 and vanished in January 2022 due to a massive eruption (VEI = 6), featuring a 57 km high volcanic cloud and generating multiple tsunamis that caused damage across the Pacific Ocean. Utilizing remote sensing techniques, including multispectral imaging from Sentinel 2, Landsat 8-9, and synthetic aperture radar (SAR) imaging from Sentinel 1, the research employs a supervised random forest classification algorithm to individuate the changing subaerial surface area of the volcano. This approach documents size variations in the islands, particularly during weeks surrounding two volcanic unrests. The classifier, trained on nearly cloud-free multispectral images, automatically delineates surface area changes over the years. The temporal resolution of area change, limited to images with less than 5% cloudiness, encompasses about 50% of Landsat and 20% of Sentinel 2 images between 2013 and 2023, selected from 739 available images. The multispectral observations are complemented by 215 Sentinel 1 SAR images, penetrating clouds, though with limited bands. Despite higher noise, the classifier on Sentinel 1 successfully distinguishes land from ocean. Sentinel 1 observations, starting in 2014, cover the volcano unrest of 2014/2015. Earth Engine, a cloud computing data facility, is used for processing. Analysis indicates a slight decrease in the area change post-2015 island formation and identifies the disappearance of the island bridge connecting HT and HH, along with two smaller islands south of HT and HH in 2022. The 2022 explosion is preceded by an increase in island area in the weeks before the eruption. Global satellite coverage could automatically detect changes in oceanic areas and distinguish water from new volcanic islands, offering a means of identifying volcanic unrests and documenting their evolution.","PeriodicalId":505744,"journal":{"name":"Frontiers in Earth Science","volume":"48 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring the Hunga Volcano (Kingdom of Tonga) starting from the unrests of 2014/2015 to the 2021/2022 explosion with the Sentinel 1-2 and Landsat 8-9 satellites\",\"authors\":\"Carla Braitenberg\",\"doi\":\"10.3389/feart.2024.1373539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the dynamic evolution of the Hunga Volcano in the Kingdom of Tonga and covers two volcanic unrests, focusing on the creation and subsequent disappearance of a new island between Hunga Tonga (HT) and Hunga Ha'apai (HH) between 2013 and 2023. The island expanded in 2015 and vanished in January 2022 due to a massive eruption (VEI = 6), featuring a 57 km high volcanic cloud and generating multiple tsunamis that caused damage across the Pacific Ocean. Utilizing remote sensing techniques, including multispectral imaging from Sentinel 2, Landsat 8-9, and synthetic aperture radar (SAR) imaging from Sentinel 1, the research employs a supervised random forest classification algorithm to individuate the changing subaerial surface area of the volcano. This approach documents size variations in the islands, particularly during weeks surrounding two volcanic unrests. The classifier, trained on nearly cloud-free multispectral images, automatically delineates surface area changes over the years. The temporal resolution of area change, limited to images with less than 5% cloudiness, encompasses about 50% of Landsat and 20% of Sentinel 2 images between 2013 and 2023, selected from 739 available images. The multispectral observations are complemented by 215 Sentinel 1 SAR images, penetrating clouds, though with limited bands. Despite higher noise, the classifier on Sentinel 1 successfully distinguishes land from ocean. Sentinel 1 observations, starting in 2014, cover the volcano unrest of 2014/2015. Earth Engine, a cloud computing data facility, is used for processing. Analysis indicates a slight decrease in the area change post-2015 island formation and identifies the disappearance of the island bridge connecting HT and HH, along with two smaller islands south of HT and HH in 2022. The 2022 explosion is preceded by an increase in island area in the weeks before the eruption. Global satellite coverage could automatically detect changes in oceanic areas and distinguish water from new volcanic islands, offering a means of identifying volcanic unrests and documenting their evolution.\",\"PeriodicalId\":505744,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":\"48 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2024.1373539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/feart.2024.1373539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了汤加王国洪加火山的动态演变,涵盖了两次火山动荡,重点是 2013 年至 2023 年期间在洪加-汤加(HT)和洪加-哈帕伊(HH)之间一个新岛屿的形成和随后的消失。该岛在 2015 年扩大,并于 2022 年 1 月因大规模喷发(VEI = 6)而消失,喷发出 57 千米高的火山云,并引发多次海啸,给整个太平洋造成破坏。这项研究利用遥感技术,包括哨兵 2 号、大地遥感卫星 8-9 号的多光谱成像和哨兵 1 号的合成孔径雷达成像,采用了一种有监督的随机森林分类算法,以确定火山不断变化的地表下面积。这种方法记录了岛屿的大小变化,尤其是在两次火山动乱前后的几周内。分类器是在几乎无云的多光谱图像上训练出来的,能自动划分出多年来表面积的变化。面积变化的时间分辨率仅限于云量小于 5%的图像,包括从 739 幅可用图像中选出的 2013 年至 2023 年期间约 50% 的 Landsat 图像和 20% 的 Sentinel 2 图像。215 幅 "哨兵 1 号 "合成孔径雷达图像可穿透云层,但波段有限,为多光谱观测提供了补充。尽管噪声较高,但哨兵 1 号的分类器仍能成功区分陆地和海洋。哨兵 1 号的观测始于 2014 年,涵盖了 2014/2015 年的火山动乱。使用云计算数据设施 "地球引擎 "进行处理。分析表明,2015 年后岛屿形成的面积变化略有减少,并确定连接 HT 和 HH 的岛桥以及 HT 和 HH 南部的两个小岛将于 2022 年消失。2022 年爆发前几周,岛屿面积有所增加。全球卫星覆盖可以自动检测海洋区域的变化,区分水域和新火山岛,为识别火山动荡和记录其演变提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring the Hunga Volcano (Kingdom of Tonga) starting from the unrests of 2014/2015 to the 2021/2022 explosion with the Sentinel 1-2 and Landsat 8-9 satellites
This study explores the dynamic evolution of the Hunga Volcano in the Kingdom of Tonga and covers two volcanic unrests, focusing on the creation and subsequent disappearance of a new island between Hunga Tonga (HT) and Hunga Ha'apai (HH) between 2013 and 2023. The island expanded in 2015 and vanished in January 2022 due to a massive eruption (VEI = 6), featuring a 57 km high volcanic cloud and generating multiple tsunamis that caused damage across the Pacific Ocean. Utilizing remote sensing techniques, including multispectral imaging from Sentinel 2, Landsat 8-9, and synthetic aperture radar (SAR) imaging from Sentinel 1, the research employs a supervised random forest classification algorithm to individuate the changing subaerial surface area of the volcano. This approach documents size variations in the islands, particularly during weeks surrounding two volcanic unrests. The classifier, trained on nearly cloud-free multispectral images, automatically delineates surface area changes over the years. The temporal resolution of area change, limited to images with less than 5% cloudiness, encompasses about 50% of Landsat and 20% of Sentinel 2 images between 2013 and 2023, selected from 739 available images. The multispectral observations are complemented by 215 Sentinel 1 SAR images, penetrating clouds, though with limited bands. Despite higher noise, the classifier on Sentinel 1 successfully distinguishes land from ocean. Sentinel 1 observations, starting in 2014, cover the volcano unrest of 2014/2015. Earth Engine, a cloud computing data facility, is used for processing. Analysis indicates a slight decrease in the area change post-2015 island formation and identifies the disappearance of the island bridge connecting HT and HH, along with two smaller islands south of HT and HH in 2022. The 2022 explosion is preceded by an increase in island area in the weeks before the eruption. Global satellite coverage could automatically detect changes in oceanic areas and distinguish water from new volcanic islands, offering a means of identifying volcanic unrests and documenting their evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信