基于神经网络的三维双摆桥式起重机规定性能自适应滑模控制

Shourui Wang, Wuyin Jin, Xia Zhang
{"title":"基于神经网络的三维双摆桥式起重机规定性能自适应滑模控制","authors":"Shourui Wang, Wuyin Jin, Xia Zhang","doi":"10.1177/01423312241261046","DOIUrl":null,"url":null,"abstract":"In order to tackle the uncertainties encountered in the operation of three-dimensional (3D) overhead crane systems and enhance the overall robustness of the control system, an adaptive sliding mode control (SMC) method based on prescribed performance is proposed in this work. Specifically, an integral sliding mode controller (ISMC) based on prescribed performance is designed for the 3D overhead crane dynamics model with double-pendulum effect, which is used to constrict system error. By considering the case of model uncertainty, time-varying parameters, track friction, and so on, the neural network (NN) is employed to estimate unknown terms in the controller design, and the Lyapunov function is applied to analyze the stability of the close-loop system. The results demonstrated that the proposed method can effectively improve the positioning accuracy and payload swing suppression performance of the overhead crane system, and also improve the robustness of the control system to deal with uncertainties.","PeriodicalId":507087,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"49 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network–based adaptive sliding mode control of three-dimensional double-pendulum overhead cranes with prescribed performance\",\"authors\":\"Shourui Wang, Wuyin Jin, Xia Zhang\",\"doi\":\"10.1177/01423312241261046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to tackle the uncertainties encountered in the operation of three-dimensional (3D) overhead crane systems and enhance the overall robustness of the control system, an adaptive sliding mode control (SMC) method based on prescribed performance is proposed in this work. Specifically, an integral sliding mode controller (ISMC) based on prescribed performance is designed for the 3D overhead crane dynamics model with double-pendulum effect, which is used to constrict system error. By considering the case of model uncertainty, time-varying parameters, track friction, and so on, the neural network (NN) is employed to estimate unknown terms in the controller design, and the Lyapunov function is applied to analyze the stability of the close-loop system. The results demonstrated that the proposed method can effectively improve the positioning accuracy and payload swing suppression performance of the overhead crane system, and also improve the robustness of the control system to deal with uncertainties.\",\"PeriodicalId\":507087,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\"49 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312241261046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312241261046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决三维(3D)桥式起重机系统运行过程中遇到的不确定性,并增强控制系统的整体鲁棒性,本研究提出了一种基于规定性能的自适应滑模控制(SMC)方法。具体而言,针对具有双摆效应的三维桥式起重机动力学模型,设计了一种基于规定性能的积分滑模控制器(ISMC),用于限制系统误差。考虑到模型不确定性、参数时变、轨道摩擦等情况,在控制器设计中采用神经网络(NN)估计未知项,并应用 Lyapunov 函数分析闭环系统的稳定性。结果表明,所提出的方法能有效提高桥式起重机系统的定位精度和有效载荷摆动抑制性能,还能提高控制系统处理不确定性的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network–based adaptive sliding mode control of three-dimensional double-pendulum overhead cranes with prescribed performance
In order to tackle the uncertainties encountered in the operation of three-dimensional (3D) overhead crane systems and enhance the overall robustness of the control system, an adaptive sliding mode control (SMC) method based on prescribed performance is proposed in this work. Specifically, an integral sliding mode controller (ISMC) based on prescribed performance is designed for the 3D overhead crane dynamics model with double-pendulum effect, which is used to constrict system error. By considering the case of model uncertainty, time-varying parameters, track friction, and so on, the neural network (NN) is employed to estimate unknown terms in the controller design, and the Lyapunov function is applied to analyze the stability of the close-loop system. The results demonstrated that the proposed method can effectively improve the positioning accuracy and payload swing suppression performance of the overhead crane system, and also improve the robustness of the control system to deal with uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信