推进硫化铋银量子点在太阳能电池中的实际应用

Nanomaterials Pub Date : 2024-08-08 DOI:10.3390/nano14161328
Fidya Azahro Nur Mawaddah, S. Z. Bisri
{"title":"推进硫化铋银量子点在太阳能电池中的实际应用","authors":"Fidya Azahro Nur Mawaddah, S. Z. Bisri","doi":"10.3390/nano14161328","DOIUrl":null,"url":null,"abstract":"Colloidal quantum dots (CQDs) show unique properties that distinguish them from their bulk form, the so-called quantum confinement effects. This feature manifests in tunable size-dependent band gaps and discrete energy levels, resulting in distinct optical and electronic properties. The investigation direction of colloidal quantum dots (CQDs) materials has started switching from high-performing materials based on Pb and Cd, which raise concerns regarding their toxicity, to more environmentally friendly compounds, such as AgBiS2. After the first breakthrough in solar cell application in 2016, the development of AgBiS2 QDs has been relatively slow, and many of the fundamental physical and chemical properties of this material are still unknown. Investigating the growth of AgBiS2 QDs is essential to understanding the fundamental properties that can improve this material’s performance. This review comprehensively summarizes the synthesis strategies, ligand choice, and solar cell fabrication of AgBiS2 QDs. The development of PbS QDs is also highlighted as the foundation for improving the quality and performance of AgBiS2 QD. Furthermore, we prospectively discuss the future direction of AgBiS2 QD and its use for solar cell applications.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Silver Bismuth Sulfide Quantum Dots for Practical Solar Cell Applications\",\"authors\":\"Fidya Azahro Nur Mawaddah, S. Z. Bisri\",\"doi\":\"10.3390/nano14161328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colloidal quantum dots (CQDs) show unique properties that distinguish them from their bulk form, the so-called quantum confinement effects. This feature manifests in tunable size-dependent band gaps and discrete energy levels, resulting in distinct optical and electronic properties. The investigation direction of colloidal quantum dots (CQDs) materials has started switching from high-performing materials based on Pb and Cd, which raise concerns regarding their toxicity, to more environmentally friendly compounds, such as AgBiS2. After the first breakthrough in solar cell application in 2016, the development of AgBiS2 QDs has been relatively slow, and many of the fundamental physical and chemical properties of this material are still unknown. Investigating the growth of AgBiS2 QDs is essential to understanding the fundamental properties that can improve this material’s performance. This review comprehensively summarizes the synthesis strategies, ligand choice, and solar cell fabrication of AgBiS2 QDs. The development of PbS QDs is also highlighted as the foundation for improving the quality and performance of AgBiS2 QD. Furthermore, we prospectively discuss the future direction of AgBiS2 QD and its use for solar cell applications.\",\"PeriodicalId\":508599,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14161328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14161328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胶体量子点(CQDs)具有区别于其块体形式的独特性质,即所谓的量子约束效应。这一特性表现为与尺寸相关的可调带隙和离散能级,从而产生不同的光学和电子特性。胶体量子点(CQDs)材料的研究方向已开始从基于铅和镉的高性能材料(其毒性令人担忧)转向更环保的化合物,如 AgBiS2。在 2016 年首次在太阳能电池应用领域取得突破后,AgBiS2 QDs 的发展相对缓慢,该材料的许多基本物理和化学性质仍然未知。研究 AgBiS2 QDs 的生长对于了解其基本特性、提高这种材料的性能至关重要。本综述全面总结了 AgBiS2 QDs 的合成策略、配体选择和太阳能电池制造。我们还强调了 PbS QDs 的发展,认为它是提高 AgBiS2 QD 质量和性能的基础。此外,我们还展望了 AgBiS2 QD 的未来发展方向及其在太阳能电池中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Silver Bismuth Sulfide Quantum Dots for Practical Solar Cell Applications
Colloidal quantum dots (CQDs) show unique properties that distinguish them from their bulk form, the so-called quantum confinement effects. This feature manifests in tunable size-dependent band gaps and discrete energy levels, resulting in distinct optical and electronic properties. The investigation direction of colloidal quantum dots (CQDs) materials has started switching from high-performing materials based on Pb and Cd, which raise concerns regarding their toxicity, to more environmentally friendly compounds, such as AgBiS2. After the first breakthrough in solar cell application in 2016, the development of AgBiS2 QDs has been relatively slow, and many of the fundamental physical and chemical properties of this material are still unknown. Investigating the growth of AgBiS2 QDs is essential to understanding the fundamental properties that can improve this material’s performance. This review comprehensively summarizes the synthesis strategies, ligand choice, and solar cell fabrication of AgBiS2 QDs. The development of PbS QDs is also highlighted as the foundation for improving the quality and performance of AgBiS2 QD. Furthermore, we prospectively discuss the future direction of AgBiS2 QD and its use for solar cell applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信