利用混沌模糊逻辑增强大型语言模型改进教育问答系统

Haoyuan Chen, Nuobei Shi, Ling Chen, Raymond S. T. Lee
{"title":"利用混沌模糊逻辑增强大型语言模型改进教育问答系统","authors":"Haoyuan Chen, Nuobei Shi, Ling Chen, Raymond S. T. Lee","doi":"10.3389/frai.2024.1404940","DOIUrl":null,"url":null,"abstract":"Online question-and-answer (Q&A) platforms are frequently replete with extensive human resource support. This study proposes a novel methodology of a customized large language model (LLM) called Chaotic LLM-based Educational Q&A System (CHAQS) to navigate the complexities associated with intelligent Q&A systems for the educational sector.It uses an expansive dataset comprising over 383,000 educational data pairs, an intricate fine-tuning process encompassing p-tuning v2, low-rank adaptation (LRA), and strategies for parameter freezing at an open-source large language model ChatGLM as a baseline model. In addition, Fuzzy Logic is implemented to regulate parameters and the system's adaptability with the Lee Oscillator to refine the model's response variability and precision.Experiment results showed a 5.12% improvement in precision score, an 11% increase in recall metric, and an 8% improvement in the F1 score as compared to other models.These results suggest that the CHAQS methodology significantly enhances the performance of educational Q&A systems, demonstrating the effectiveness of combining advanced tuning techniques and fuzzy logic for improved model precision and adaptability.","PeriodicalId":508738,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing educational Q&A systems using a Chaotic Fuzzy Logic-Augmented large language model\",\"authors\":\"Haoyuan Chen, Nuobei Shi, Ling Chen, Raymond S. T. Lee\",\"doi\":\"10.3389/frai.2024.1404940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online question-and-answer (Q&A) platforms are frequently replete with extensive human resource support. This study proposes a novel methodology of a customized large language model (LLM) called Chaotic LLM-based Educational Q&A System (CHAQS) to navigate the complexities associated with intelligent Q&A systems for the educational sector.It uses an expansive dataset comprising over 383,000 educational data pairs, an intricate fine-tuning process encompassing p-tuning v2, low-rank adaptation (LRA), and strategies for parameter freezing at an open-source large language model ChatGLM as a baseline model. In addition, Fuzzy Logic is implemented to regulate parameters and the system's adaptability with the Lee Oscillator to refine the model's response variability and precision.Experiment results showed a 5.12% improvement in precision score, an 11% increase in recall metric, and an 8% improvement in the F1 score as compared to other models.These results suggest that the CHAQS methodology significantly enhances the performance of educational Q&A systems, demonstrating the effectiveness of combining advanced tuning techniques and fuzzy logic for improved model precision and adaptability.\",\"PeriodicalId\":508738,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"4 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1404940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1404940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线问答(Q&A)平台经常需要大量的人力资源支持。本研究提出了一种新颖的定制大型语言模型(LLM)方法,称为基于混沌LLM的教育问答系统(CHAQS),以解决与教育领域智能问答系统相关的复杂问题。它使用了一个由超过383,000对教育数据组成的庞大数据集,一个复杂的微调过程,包括p-tuning v2、低秩自适应(LRA),以及以开源大型语言模型ChatGLM为基准模型的参数冻结策略。实验结果表明,与其他模型相比,精确度提高了 5.12%,召回率提高了 11%,F1 分数提高了 8%。这些结果表明,CHAQS 方法显著提高了教育问答系统的性能,证明了结合高级调整技术和模糊逻辑提高模型精确度和适应性的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing educational Q&A systems using a Chaotic Fuzzy Logic-Augmented large language model
Online question-and-answer (Q&A) platforms are frequently replete with extensive human resource support. This study proposes a novel methodology of a customized large language model (LLM) called Chaotic LLM-based Educational Q&A System (CHAQS) to navigate the complexities associated with intelligent Q&A systems for the educational sector.It uses an expansive dataset comprising over 383,000 educational data pairs, an intricate fine-tuning process encompassing p-tuning v2, low-rank adaptation (LRA), and strategies for parameter freezing at an open-source large language model ChatGLM as a baseline model. In addition, Fuzzy Logic is implemented to regulate parameters and the system's adaptability with the Lee Oscillator to refine the model's response variability and precision.Experiment results showed a 5.12% improvement in precision score, an 11% increase in recall metric, and an 8% improvement in the F1 score as compared to other models.These results suggest that the CHAQS methodology significantly enhances the performance of educational Q&A systems, demonstrating the effectiveness of combining advanced tuning techniques and fuzzy logic for improved model precision and adaptability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信