{"title":"蝉科 Polyneurini(半翅目,蝉科)的系统发育和进化","authors":"Jiali Wang, Wenzhe Zhang, Jingyuan Yang, Masami Hayashi, Cong Wei","doi":"10.1111/syen.12649","DOIUrl":null,"url":null,"abstract":"Repeated and convergent evolution of wing venation may have contributed to the diversification and evolution of the cicada tribe Polyneurini, which are well known for colourful wings and complex wing venation. We investigated the phylogeny and diversification of Polyneurini based on morphological characters and molecular data, as well as molecular data of their obligate endosymbiont ‘Candidatus Sulcia muelleri’ (hereafter referred to as Sulcia). Phylogenetic analyses do not support the monophyly of the formerly defined subtribes Polyneurina and Formotosenina. Accordingly, Parapolyneura Wang, Hayashi & Wei gen. n. is erected for Pa. guoliangi (Wang & Liu) comb. n.; Formotosena pervalida Wang, Hayashi & Wei sp. n. and F. maculata Wang, Hayashi & Wei sp. n. are established; Proretinata Chou & Yao stat. rev. is resurrected from junior synonymy with Angamiana Distant; five junior synonyms are recognized for Pr. floridula (Distant) comb. n., and four junior synonyms are proposed for Po. cheni Chou & Yao. The subtribes of Polyneurini are redefined, in which Polyneura Westwood, Parapolyneura gen. n., Angamiana and Proretinata stat. rev. are included in Polyneurina, and Formotosena kato and Graptopsaltria Stål trans. n. in Formotosenina. The phylogeny of the very conservative Sulcia mirrors the host phylogeny, which supports the redefinition of the two subtribes in Polyneurini. Polyneurini likely originated and initially diversified during the Mid‐Miocene. Dramatic Pleistocene climatic oscillations together with the sea‐level fluctuations had profound effects on the diversification and vicariance of Polyneurini. The reticulate wing venation most likely evolved three times in Polyneurini. This study improves our understanding of diversification and evolution of this unique cicada tribe and serves as an example for future studies on the diversification of Cicadidae.","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phylogeny and evolution of the cicada tribe Polyneurini (Hemiptera, Cicadidae)\",\"authors\":\"Jiali Wang, Wenzhe Zhang, Jingyuan Yang, Masami Hayashi, Cong Wei\",\"doi\":\"10.1111/syen.12649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Repeated and convergent evolution of wing venation may have contributed to the diversification and evolution of the cicada tribe Polyneurini, which are well known for colourful wings and complex wing venation. We investigated the phylogeny and diversification of Polyneurini based on morphological characters and molecular data, as well as molecular data of their obligate endosymbiont ‘Candidatus Sulcia muelleri’ (hereafter referred to as Sulcia). Phylogenetic analyses do not support the monophyly of the formerly defined subtribes Polyneurina and Formotosenina. Accordingly, Parapolyneura Wang, Hayashi & Wei gen. n. is erected for Pa. guoliangi (Wang & Liu) comb. n.; Formotosena pervalida Wang, Hayashi & Wei sp. n. and F. maculata Wang, Hayashi & Wei sp. n. are established; Proretinata Chou & Yao stat. rev. is resurrected from junior synonymy with Angamiana Distant; five junior synonyms are recognized for Pr. floridula (Distant) comb. n., and four junior synonyms are proposed for Po. cheni Chou & Yao. The subtribes of Polyneurini are redefined, in which Polyneura Westwood, Parapolyneura gen. n., Angamiana and Proretinata stat. rev. are included in Polyneurina, and Formotosena kato and Graptopsaltria Stål trans. n. in Formotosenina. The phylogeny of the very conservative Sulcia mirrors the host phylogeny, which supports the redefinition of the two subtribes in Polyneurini. Polyneurini likely originated and initially diversified during the Mid‐Miocene. Dramatic Pleistocene climatic oscillations together with the sea‐level fluctuations had profound effects on the diversification and vicariance of Polyneurini. The reticulate wing venation most likely evolved three times in Polyneurini. This study improves our understanding of diversification and evolution of this unique cicada tribe and serves as an example for future studies on the diversification of Cicadidae.\",\"PeriodicalId\":22126,\"journal\":{\"name\":\"Systematic Entomology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/syen.12649\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/syen.12649","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Phylogeny and evolution of the cicada tribe Polyneurini (Hemiptera, Cicadidae)
Repeated and convergent evolution of wing venation may have contributed to the diversification and evolution of the cicada tribe Polyneurini, which are well known for colourful wings and complex wing venation. We investigated the phylogeny and diversification of Polyneurini based on morphological characters and molecular data, as well as molecular data of their obligate endosymbiont ‘Candidatus Sulcia muelleri’ (hereafter referred to as Sulcia). Phylogenetic analyses do not support the monophyly of the formerly defined subtribes Polyneurina and Formotosenina. Accordingly, Parapolyneura Wang, Hayashi & Wei gen. n. is erected for Pa. guoliangi (Wang & Liu) comb. n.; Formotosena pervalida Wang, Hayashi & Wei sp. n. and F. maculata Wang, Hayashi & Wei sp. n. are established; Proretinata Chou & Yao stat. rev. is resurrected from junior synonymy with Angamiana Distant; five junior synonyms are recognized for Pr. floridula (Distant) comb. n., and four junior synonyms are proposed for Po. cheni Chou & Yao. The subtribes of Polyneurini are redefined, in which Polyneura Westwood, Parapolyneura gen. n., Angamiana and Proretinata stat. rev. are included in Polyneurina, and Formotosena kato and Graptopsaltria Stål trans. n. in Formotosenina. The phylogeny of the very conservative Sulcia mirrors the host phylogeny, which supports the redefinition of the two subtribes in Polyneurini. Polyneurini likely originated and initially diversified during the Mid‐Miocene. Dramatic Pleistocene climatic oscillations together with the sea‐level fluctuations had profound effects on the diversification and vicariance of Polyneurini. The reticulate wing venation most likely evolved three times in Polyneurini. This study improves our understanding of diversification and evolution of this unique cicada tribe and serves as an example for future studies on the diversification of Cicadidae.
期刊介绍:
Systematic Entomology publishes original papers on insect systematics, phylogenetics and integrative taxonomy, with a preference for general interest papers of broad biological, evolutionary or zoogeographical relevance.