Zhiguo Ma, Yumiao Wang, Yi Yang, Youjing Wang, Kai Zhao, Yixin Li, Changbo Fu, Wanbing He, Yu-Gang Ma
{"title":"模拟激光诱导等离子体中核异构体的产生","authors":"Zhiguo Ma, Yumiao Wang, Yi Yang, Youjing Wang, Kai Zhao, Yixin Li, Changbo Fu, Wanbing He, Yu-Gang Ma","doi":"10.1063/5.0212163","DOIUrl":null,"url":null,"abstract":"Nuclear isomers play essential roles in various fields, including stellar nucleosynthesis, nuclear clocks, nuclear batteries, clean nuclear energy, and γ-ray lasers. Recent technological advances in high-intensity lasers have made it possible to excite or de-excite nuclear isomers using table-top laser equipment. Utilizing a particle-in-cell code, we investigate the interaction of a laser with a nanowire array and calculate the production rates of the 73mGe (E1 = 13.3 keV) and 107mAg (E1 = 93.1 keV) isomers. For 73m1Ge, production by Coulomb excitation is found to contribute a peak efficiency of 1.0 × 1019 particles s−1 J−1, while nuclear excitation by electron capture (NEEC) contributes a peak of 1.65 × 1011 particles s−1 J−1. These results indicate a high isomeric production ratio, as well as demonstrating the potential for confirming the existence of NEEC, a long-expected but so far experimentally unobserved fundamental process.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of nuclear isomer production in laser-induced plasma\",\"authors\":\"Zhiguo Ma, Yumiao Wang, Yi Yang, Youjing Wang, Kai Zhao, Yixin Li, Changbo Fu, Wanbing He, Yu-Gang Ma\",\"doi\":\"10.1063/5.0212163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear isomers play essential roles in various fields, including stellar nucleosynthesis, nuclear clocks, nuclear batteries, clean nuclear energy, and γ-ray lasers. Recent technological advances in high-intensity lasers have made it possible to excite or de-excite nuclear isomers using table-top laser equipment. Utilizing a particle-in-cell code, we investigate the interaction of a laser with a nanowire array and calculate the production rates of the 73mGe (E1 = 13.3 keV) and 107mAg (E1 = 93.1 keV) isomers. For 73m1Ge, production by Coulomb excitation is found to contribute a peak efficiency of 1.0 × 1019 particles s−1 J−1, while nuclear excitation by electron capture (NEEC) contributes a peak of 1.65 × 1011 particles s−1 J−1. These results indicate a high isomeric production ratio, as well as demonstrating the potential for confirming the existence of NEEC, a long-expected but so far experimentally unobserved fundamental process.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0212163\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0212163","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulation of nuclear isomer production in laser-induced plasma
Nuclear isomers play essential roles in various fields, including stellar nucleosynthesis, nuclear clocks, nuclear batteries, clean nuclear energy, and γ-ray lasers. Recent technological advances in high-intensity lasers have made it possible to excite or de-excite nuclear isomers using table-top laser equipment. Utilizing a particle-in-cell code, we investigate the interaction of a laser with a nanowire array and calculate the production rates of the 73mGe (E1 = 13.3 keV) and 107mAg (E1 = 93.1 keV) isomers. For 73m1Ge, production by Coulomb excitation is found to contribute a peak efficiency of 1.0 × 1019 particles s−1 J−1, while nuclear excitation by electron capture (NEEC) contributes a peak of 1.65 × 1011 particles s−1 J−1. These results indicate a high isomeric production ratio, as well as demonstrating the potential for confirming the existence of NEEC, a long-expected but so far experimentally unobserved fundamental process.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.