PLSKO:用于控制 omics 变量选择中错误发现率的鲁棒山寨生成器

bioRxiv Pub Date : 2024-08-08 DOI:10.1101/2024.08.06.606935
Guannan Yang, E. Menkhorst, E. Dimitriadis, K. Lê Cao
{"title":"PLSKO:用于控制 omics 变量选择中错误发现率的鲁棒山寨生成器","authors":"Guannan Yang, E. Menkhorst, E. Dimitriadis, K. Lê Cao","doi":"10.1101/2024.08.06.606935","DOIUrl":null,"url":null,"abstract":"The knockoff framework, combined with variable selection procedure, controls false discovery rate (FDR) without the need for calculating p−values. Hence, it presents an attractive alternative to differential expression analysis of high-throughput biological data. However, current knockoff variable generators make strong assumptions or insufficient approximations that lead to FDR inflation when applied to biological data. We propose Partial Least Squares Knockoff (PLSKO), an efficient and assumption-free knockoff generator that is robust to varying types of biological omics data. We compare PLSKO with a wide range of existing methods. In simulation studies, we show that PLSKO is the only method that controls FDR with sufficient statistical power in complex non-linear cases. In semi-simulation studies based on real data, we show that PLSKO generates valid knockoff variables for different types of biological data, including RNA-seq, proteomics, metabolomics and microbiome. In preeclampsia multi-omics case studies, we combined PLSKO with Aggregation Knockoff to address the randomness of knockoffs and improve power, and show that our method is able to select variables that are biologically relevant.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"118 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLSKO: a robust knockoff generator to control false discovery rate in omics variable selection\",\"authors\":\"Guannan Yang, E. Menkhorst, E. Dimitriadis, K. Lê Cao\",\"doi\":\"10.1101/2024.08.06.606935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The knockoff framework, combined with variable selection procedure, controls false discovery rate (FDR) without the need for calculating p−values. Hence, it presents an attractive alternative to differential expression analysis of high-throughput biological data. However, current knockoff variable generators make strong assumptions or insufficient approximations that lead to FDR inflation when applied to biological data. We propose Partial Least Squares Knockoff (PLSKO), an efficient and assumption-free knockoff generator that is robust to varying types of biological omics data. We compare PLSKO with a wide range of existing methods. In simulation studies, we show that PLSKO is the only method that controls FDR with sufficient statistical power in complex non-linear cases. In semi-simulation studies based on real data, we show that PLSKO generates valid knockoff variables for different types of biological data, including RNA-seq, proteomics, metabolomics and microbiome. In preeclampsia multi-omics case studies, we combined PLSKO with Aggregation Knockoff to address the randomness of knockoffs and improve power, and show that our method is able to select variables that are biologically relevant.\",\"PeriodicalId\":505198,\"journal\":{\"name\":\"bioRxiv\",\"volume\":\"118 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.06.606935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.06.606935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

山寨框架与变量选择程序相结合,无需计算 p 值就能控制错误发现率(FDR)。因此,它为高通量生物数据的差异表达分析提供了一个极具吸引力的替代方案。然而,目前的 "山寨 "变量生成器假设性强或近似性不足,在应用于生物数据时会导致 FDR 膨胀。我们提出了部分最小二乘法生成器(PLSKO),这是一种高效、无假设的生成器,对不同类型的生物 omics 数据具有鲁棒性。我们将 PLSKO 与多种现有方法进行了比较。在模拟研究中,我们发现 PLSKO 是唯一能在复杂的非线性情况下以足够的统计能力控制 FDR 的方法。在基于真实数据的半模拟研究中,我们发现 PLSKO 能为不同类型的生物数据(包括 RNA-seq、蛋白质组学、代谢组学和微生物组)生成有效的敲除变量。在子痫前期多组学案例研究中,我们将 PLSKO 与聚合敲除相结合,解决了敲除的随机性问题,提高了敲除能力,并证明我们的方法能够选择与生物相关的变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PLSKO: a robust knockoff generator to control false discovery rate in omics variable selection
The knockoff framework, combined with variable selection procedure, controls false discovery rate (FDR) without the need for calculating p−values. Hence, it presents an attractive alternative to differential expression analysis of high-throughput biological data. However, current knockoff variable generators make strong assumptions or insufficient approximations that lead to FDR inflation when applied to biological data. We propose Partial Least Squares Knockoff (PLSKO), an efficient and assumption-free knockoff generator that is robust to varying types of biological omics data. We compare PLSKO with a wide range of existing methods. In simulation studies, we show that PLSKO is the only method that controls FDR with sufficient statistical power in complex non-linear cases. In semi-simulation studies based on real data, we show that PLSKO generates valid knockoff variables for different types of biological data, including RNA-seq, proteomics, metabolomics and microbiome. In preeclampsia multi-omics case studies, we combined PLSKO with Aggregation Knockoff to address the randomness of knockoffs and improve power, and show that our method is able to select variables that are biologically relevant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信