{"title":"电场下外部硫酸盐对混凝土侵蚀的研究","authors":"Huanqin Liu, Nuoqi Shi, Kaizhao Han, Xu Fu, Yuexin Fang","doi":"10.3390/coatings14081008","DOIUrl":null,"url":null,"abstract":"The research on and application of electric fields to promote the rapid infiltration of ions into cement concrete have been widely explored. Still, there are few studies on the migration of sulfate ions using electric fields. In this paper, a new test method is designed using the principle of electric fields, that is, to accelerate the attack of sulfate into concrete under the action of the electric field, to test the resistance of concrete to sulfate attack. By testing different water–cement ratios, different pulse frequencies, different ages, and different soaking environments, the influence of the electric field on the sulfate resistance of concrete was analyzed. The results show that the compressive strength of concrete in a sulfate attack environment is smaller than that of conventional attack and water immersion environment when the water–cement ratio is 0.3, 0.4, and 0.5 under the action of the electric field and increases with the increase of water in the water–cement ratio. Compared with a 14 day test, the compressive strength of concrete in a sulfate attack environment decreased by 1.9%, 8.6%, and 2.9%, respectively, at 28 days, which was faster than that of conventional attack and water immersion. The compressive strength of the concrete in the sulfate attack environment during the full immersion test and the semi-immersion test is smaller than that of the conventional attack and water immersion, and the semi-immersion test method is more obvious than the full immersion test method. The microscopic morphology of the test group, the water group, and the solution group were compared. From the microscopic morphology comparison, it can be seen that the electric field accelerates the diffusion of sulfate ions into the cement concrete and accelerates the reaction of sulfate ions with the relevant components in the cement concrete. Given the demand for concrete to resist sulfate attack under the action of the electric field, developing new and efficient protective materials is an important research direction. At present, the market lacks protective materials specifically for such an attack environment. This paper provides the theoretical basis and technical support for improving the effectiveness of concrete surface protection technology and engineering practices.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Attack of Concrete by External Sulfate under Electric Fields\",\"authors\":\"Huanqin Liu, Nuoqi Shi, Kaizhao Han, Xu Fu, Yuexin Fang\",\"doi\":\"10.3390/coatings14081008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research on and application of electric fields to promote the rapid infiltration of ions into cement concrete have been widely explored. Still, there are few studies on the migration of sulfate ions using electric fields. In this paper, a new test method is designed using the principle of electric fields, that is, to accelerate the attack of sulfate into concrete under the action of the electric field, to test the resistance of concrete to sulfate attack. By testing different water–cement ratios, different pulse frequencies, different ages, and different soaking environments, the influence of the electric field on the sulfate resistance of concrete was analyzed. The results show that the compressive strength of concrete in a sulfate attack environment is smaller than that of conventional attack and water immersion environment when the water–cement ratio is 0.3, 0.4, and 0.5 under the action of the electric field and increases with the increase of water in the water–cement ratio. Compared with a 14 day test, the compressive strength of concrete in a sulfate attack environment decreased by 1.9%, 8.6%, and 2.9%, respectively, at 28 days, which was faster than that of conventional attack and water immersion. The compressive strength of the concrete in the sulfate attack environment during the full immersion test and the semi-immersion test is smaller than that of the conventional attack and water immersion, and the semi-immersion test method is more obvious than the full immersion test method. The microscopic morphology of the test group, the water group, and the solution group were compared. From the microscopic morphology comparison, it can be seen that the electric field accelerates the diffusion of sulfate ions into the cement concrete and accelerates the reaction of sulfate ions with the relevant components in the cement concrete. Given the demand for concrete to resist sulfate attack under the action of the electric field, developing new and efficient protective materials is an important research direction. At present, the market lacks protective materials specifically for such an attack environment. This paper provides the theoretical basis and technical support for improving the effectiveness of concrete surface protection technology and engineering practices.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14081008\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14081008","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Study on the Attack of Concrete by External Sulfate under Electric Fields
The research on and application of electric fields to promote the rapid infiltration of ions into cement concrete have been widely explored. Still, there are few studies on the migration of sulfate ions using electric fields. In this paper, a new test method is designed using the principle of electric fields, that is, to accelerate the attack of sulfate into concrete under the action of the electric field, to test the resistance of concrete to sulfate attack. By testing different water–cement ratios, different pulse frequencies, different ages, and different soaking environments, the influence of the electric field on the sulfate resistance of concrete was analyzed. The results show that the compressive strength of concrete in a sulfate attack environment is smaller than that of conventional attack and water immersion environment when the water–cement ratio is 0.3, 0.4, and 0.5 under the action of the electric field and increases with the increase of water in the water–cement ratio. Compared with a 14 day test, the compressive strength of concrete in a sulfate attack environment decreased by 1.9%, 8.6%, and 2.9%, respectively, at 28 days, which was faster than that of conventional attack and water immersion. The compressive strength of the concrete in the sulfate attack environment during the full immersion test and the semi-immersion test is smaller than that of the conventional attack and water immersion, and the semi-immersion test method is more obvious than the full immersion test method. The microscopic morphology of the test group, the water group, and the solution group were compared. From the microscopic morphology comparison, it can be seen that the electric field accelerates the diffusion of sulfate ions into the cement concrete and accelerates the reaction of sulfate ions with the relevant components in the cement concrete. Given the demand for concrete to resist sulfate attack under the action of the electric field, developing new and efficient protective materials is an important research direction. At present, the market lacks protective materials specifically for such an attack environment. This paper provides the theoretical basis and technical support for improving the effectiveness of concrete surface protection technology and engineering practices.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material