利用深度学习模型监控高产流程

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Musaddiq Ibrahim, Chunxia Zhang, Tahir Mahmood
{"title":"利用深度学习模型监控高产流程","authors":"Musaddiq Ibrahim, Chunxia Zhang, Tahir Mahmood","doi":"10.1002/qre.3635","DOIUrl":null,"url":null,"abstract":"Quality testing and monitoring advancements have allowed modern production processes to achieve extremely low failure rates, especially in the era of Industry 4.0. Such processes are known as high‐yield processes, and their data set consists of an excess number of zeros. Count models such as Poisson, Negative Binomial (NB), and Conway‐Maxwell‐Poisson (COM‐Poisson) are usually considered good candidates to model such data, but the excess zeros are larger than the number of zeros, which these models fit inherently. Hence, the zero‐inflated version of these count models provides better fitness of high‐quality data. Usually, linearly/non‐linearly related variables are also associated with failure rate data; hence, regression models based on zero‐inflated count models are used for model fitting. This study is designed to propose deep learning (DL) based control charts when the failure rate variables follow the zero‐inflated COM‐Poisson (ZICOM‐Poisson) distribution because DL models can detect complicated non‐linear patterns and relationships in data. Further, the proposed methods are compared with existing control charts based on neural networks, principal component analysis designed based on Poisson, NB, and zero‐inflated Poisson (ZIP) and non‐linear principal component analysis designed based on Poisson, NB, and ZIP. Using run length properties, the simulation study evaluates monitoring approaches, and a flight delay application illustrates the implementation of the research. The findings revealed that the proposed methods have outperformed all existing control charts.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surveillance of high‐yield processes using deep learning models\",\"authors\":\"Musaddiq Ibrahim, Chunxia Zhang, Tahir Mahmood\",\"doi\":\"10.1002/qre.3635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quality testing and monitoring advancements have allowed modern production processes to achieve extremely low failure rates, especially in the era of Industry 4.0. Such processes are known as high‐yield processes, and their data set consists of an excess number of zeros. Count models such as Poisson, Negative Binomial (NB), and Conway‐Maxwell‐Poisson (COM‐Poisson) are usually considered good candidates to model such data, but the excess zeros are larger than the number of zeros, which these models fit inherently. Hence, the zero‐inflated version of these count models provides better fitness of high‐quality data. Usually, linearly/non‐linearly related variables are also associated with failure rate data; hence, regression models based on zero‐inflated count models are used for model fitting. This study is designed to propose deep learning (DL) based control charts when the failure rate variables follow the zero‐inflated COM‐Poisson (ZICOM‐Poisson) distribution because DL models can detect complicated non‐linear patterns and relationships in data. Further, the proposed methods are compared with existing control charts based on neural networks, principal component analysis designed based on Poisson, NB, and zero‐inflated Poisson (ZIP) and non‐linear principal component analysis designed based on Poisson, NB, and ZIP. Using run length properties, the simulation study evaluates monitoring approaches, and a flight delay application illustrates the implementation of the research. The findings revealed that the proposed methods have outperformed all existing control charts.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3635\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3635","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

质量检测和监控技术的进步使现代生产流程实现了极低的故障率,尤其是在工业 4.0 时代。这类流程被称为高产流程,其数据集由过量的零组成。泊松、负二项(NB)和康威-麦克斯韦-泊松(COM-Poisson)等计数模型通常被认为是此类数据建模的良好候选模型,但过量的零点数大于这些模型固有拟合的零点数。因此,这些计数模型的零膨胀版本能更好地拟合高质量数据。通常,线性/非线性相关变量也与故障率数据有关;因此,基于零膨胀计数模型的回归模型被用于模型拟合。本研究旨在提出基于深度学习(DL)的控制图,当故障率变量遵循零膨胀 COM-泊松(ZICOM-Poisson)分布时,因为 DL 模型可以检测数据中复杂的非线性模式和关系。此外,还将所提出的方法与现有的基于神经网络的控制图、基于泊松、NB 和零膨胀泊松(ZIP)设计的主成分分析法以及基于泊松、NB 和 ZIP 设计的非线性主成分分析法进行了比较。利用运行长度属性,模拟研究评估了监测方法,并通过航班延误应用说明了研究的实施。研究结果表明,所提出的方法优于所有现有的控制图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surveillance of high‐yield processes using deep learning models
Quality testing and monitoring advancements have allowed modern production processes to achieve extremely low failure rates, especially in the era of Industry 4.0. Such processes are known as high‐yield processes, and their data set consists of an excess number of zeros. Count models such as Poisson, Negative Binomial (NB), and Conway‐Maxwell‐Poisson (COM‐Poisson) are usually considered good candidates to model such data, but the excess zeros are larger than the number of zeros, which these models fit inherently. Hence, the zero‐inflated version of these count models provides better fitness of high‐quality data. Usually, linearly/non‐linearly related variables are also associated with failure rate data; hence, regression models based on zero‐inflated count models are used for model fitting. This study is designed to propose deep learning (DL) based control charts when the failure rate variables follow the zero‐inflated COM‐Poisson (ZICOM‐Poisson) distribution because DL models can detect complicated non‐linear patterns and relationships in data. Further, the proposed methods are compared with existing control charts based on neural networks, principal component analysis designed based on Poisson, NB, and zero‐inflated Poisson (ZIP) and non‐linear principal component analysis designed based on Poisson, NB, and ZIP. Using run length properties, the simulation study evaluates monitoring approaches, and a flight delay application illustrates the implementation of the research. The findings revealed that the proposed methods have outperformed all existing control charts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信