{"title":"一阶拓扑绝缘体和超导体中涡旋超晶格诱导的二阶拓扑中隙态","authors":"Jing He, Yu Yan, Yajie Wu","doi":"10.1088/1402-4896/ad6d1a","DOIUrl":null,"url":null,"abstract":"\n Topological defects such as vortex and dislocations, support zero-energy localized states as a reflection of the bulk topology, in first-order topological insulators and superconductors. Furthermore, emergent first-order topological mid-gap states have been discovered driven by the magnetic vortex superlattice. However, whether the higher-order topological mid-gap states would emerge from the first-order topological insulators and superconductors with the vortex superlattice remains elusive. In this work, we propose vortex superlattice could induce second-order topological mid-gap states with staggered lattice spacings for vortices in first-order topological insulators and superconductors. These higher-order topological mid-gap states originate from the staggered tunneling between vortex-induced bound states and the emergent π flux on vortex superlattices, as an intrinsic exhibition of the interplay between vortices and bulk topology for the first-order topological states. Our work uncovers higher-topological characteristics of topological-defect superlattice in first-order topological states, and develops a controllable environment for the creation and exploration of higher-order topological states.","PeriodicalId":503429,"journal":{"name":"Physica Scripta","volume":"16 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vortex superlattice induced second-order topological mid-gap states in first-order topological insulators and superconductors\",\"authors\":\"Jing He, Yu Yan, Yajie Wu\",\"doi\":\"10.1088/1402-4896/ad6d1a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Topological defects such as vortex and dislocations, support zero-energy localized states as a reflection of the bulk topology, in first-order topological insulators and superconductors. Furthermore, emergent first-order topological mid-gap states have been discovered driven by the magnetic vortex superlattice. However, whether the higher-order topological mid-gap states would emerge from the first-order topological insulators and superconductors with the vortex superlattice remains elusive. In this work, we propose vortex superlattice could induce second-order topological mid-gap states with staggered lattice spacings for vortices in first-order topological insulators and superconductors. These higher-order topological mid-gap states originate from the staggered tunneling between vortex-induced bound states and the emergent π flux on vortex superlattices, as an intrinsic exhibition of the interplay between vortices and bulk topology for the first-order topological states. Our work uncovers higher-topological characteristics of topological-defect superlattice in first-order topological states, and develops a controllable environment for the creation and exploration of higher-order topological states.\",\"PeriodicalId\":503429,\"journal\":{\"name\":\"Physica Scripta\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Scripta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1402-4896/ad6d1a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad6d1a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vortex superlattice induced second-order topological mid-gap states in first-order topological insulators and superconductors
Topological defects such as vortex and dislocations, support zero-energy localized states as a reflection of the bulk topology, in first-order topological insulators and superconductors. Furthermore, emergent first-order topological mid-gap states have been discovered driven by the magnetic vortex superlattice. However, whether the higher-order topological mid-gap states would emerge from the first-order topological insulators and superconductors with the vortex superlattice remains elusive. In this work, we propose vortex superlattice could induce second-order topological mid-gap states with staggered lattice spacings for vortices in first-order topological insulators and superconductors. These higher-order topological mid-gap states originate from the staggered tunneling between vortex-induced bound states and the emergent π flux on vortex superlattices, as an intrinsic exhibition of the interplay between vortices and bulk topology for the first-order topological states. Our work uncovers higher-topological characteristics of topological-defect superlattice in first-order topological states, and develops a controllable environment for the creation and exploration of higher-order topological states.