D. Fargion, P. G. De Sanctis Lucentini, M. Khlopov
{"title":"UHECR 星团:来自局部片状星系的最亮星核","authors":"D. Fargion, P. G. De Sanctis Lucentini, M. Khlopov","doi":"10.3390/universe10080323","DOIUrl":null,"url":null,"abstract":"The ultra-high-energy cosmic ray (UHECR) puzzle is reviewed under the hints of a few basic results: clustering, anisotropy, asymmetry, bending, and composition changes with energies. We show how the lightest UHECR nuclei from the nearest AGN or Star-Burst sources, located inside a few Mpc Local Sheets, may explain, at best, the observed clustering of Hot Spots at tens EeV energy. Among the possible local extragalactic candidate sources, we derived the main contribution of very few galactic sources. These are located in the Local Sheet plane within a distance of a few Mpc, ejecting UHECR at a few tens of EeV energy. UHECR also shine at lower energies of several EeV, partially feeding the Auger dipole by LMC and possibly a few nearer galactic sources. For the very recent highest energy UHECR event, if a nucleon, it may be explained by a model based on the scattering of UHE ZeV neutrinos on low-mass relic neutrinos. Such scatterings are capable of correlating, via Z boson resonance, the most distant cosmic sources above the GZK bound with such an enigmatic UHECR event. Otherwise, these extreme events, if made by the heaviest composition, could originate from the largest bending trajectory of heaviest nuclei or from nearby sources, even galactic ones. In summary, the present lightest to heavy nuclei model UHECR from the Local Sheet could successfully correlate UHECR clustering with the nearest galaxies and AGN. Heavy UHECR may shine by being widely deflected from the Local Sheet or from past galactic, GRB, or SGR explosive ejection.","PeriodicalId":48646,"journal":{"name":"Universe","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UHECR Clustering: Lightest Nuclei from Local Sheet Galaxies\",\"authors\":\"D. Fargion, P. G. De Sanctis Lucentini, M. Khlopov\",\"doi\":\"10.3390/universe10080323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultra-high-energy cosmic ray (UHECR) puzzle is reviewed under the hints of a few basic results: clustering, anisotropy, asymmetry, bending, and composition changes with energies. We show how the lightest UHECR nuclei from the nearest AGN or Star-Burst sources, located inside a few Mpc Local Sheets, may explain, at best, the observed clustering of Hot Spots at tens EeV energy. Among the possible local extragalactic candidate sources, we derived the main contribution of very few galactic sources. These are located in the Local Sheet plane within a distance of a few Mpc, ejecting UHECR at a few tens of EeV energy. UHECR also shine at lower energies of several EeV, partially feeding the Auger dipole by LMC and possibly a few nearer galactic sources. For the very recent highest energy UHECR event, if a nucleon, it may be explained by a model based on the scattering of UHE ZeV neutrinos on low-mass relic neutrinos. Such scatterings are capable of correlating, via Z boson resonance, the most distant cosmic sources above the GZK bound with such an enigmatic UHECR event. Otherwise, these extreme events, if made by the heaviest composition, could originate from the largest bending trajectory of heaviest nuclei or from nearby sources, even galactic ones. In summary, the present lightest to heavy nuclei model UHECR from the Local Sheet could successfully correlate UHECR clustering with the nearest galaxies and AGN. Heavy UHECR may shine by being widely deflected from the Local Sheet or from past galactic, GRB, or SGR explosive ejection.\",\"PeriodicalId\":48646,\"journal\":{\"name\":\"Universe\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/universe10080323\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universe","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/universe10080323","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
UHECR Clustering: Lightest Nuclei from Local Sheet Galaxies
The ultra-high-energy cosmic ray (UHECR) puzzle is reviewed under the hints of a few basic results: clustering, anisotropy, asymmetry, bending, and composition changes with energies. We show how the lightest UHECR nuclei from the nearest AGN or Star-Burst sources, located inside a few Mpc Local Sheets, may explain, at best, the observed clustering of Hot Spots at tens EeV energy. Among the possible local extragalactic candidate sources, we derived the main contribution of very few galactic sources. These are located in the Local Sheet plane within a distance of a few Mpc, ejecting UHECR at a few tens of EeV energy. UHECR also shine at lower energies of several EeV, partially feeding the Auger dipole by LMC and possibly a few nearer galactic sources. For the very recent highest energy UHECR event, if a nucleon, it may be explained by a model based on the scattering of UHE ZeV neutrinos on low-mass relic neutrinos. Such scatterings are capable of correlating, via Z boson resonance, the most distant cosmic sources above the GZK bound with such an enigmatic UHECR event. Otherwise, these extreme events, if made by the heaviest composition, could originate from the largest bending trajectory of heaviest nuclei or from nearby sources, even galactic ones. In summary, the present lightest to heavy nuclei model UHECR from the Local Sheet could successfully correlate UHECR clustering with the nearest galaxies and AGN. Heavy UHECR may shine by being widely deflected from the Local Sheet or from past galactic, GRB, or SGR explosive ejection.
UniversePhysics and Astronomy-General Physics and Astronomy
CiteScore
4.30
自引率
17.20%
发文量
562
审稿时长
24.38 days
期刊介绍:
Universe (ISSN 2218-1997) is an international peer-reviewed open access journal focused on fundamental principles in physics. It publishes reviews, research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their research results in as much detail as possible. There is no restriction on the length of the papers.