用于人员重新识别的反向金字塔注意力引导网络

Jiang Liu, Wei Bai, Yun Hui
{"title":"用于人员重新识别的反向金字塔注意力引导网络","authors":"Jiang Liu, Wei Bai, Yun Hui","doi":"10.4018/ijcini.349982","DOIUrl":null,"url":null,"abstract":"Person re-identification aims to retrieve pedestrians with the same identity across different cameras. However, current methods increase attention to interfering regions when dealing with complex backgrounds and occlusion, especially in the presence of similar interfering features. To enhance the robustness of the model, we propose the Reverse Pyramid Attention Guidance (RPAG) network, using a reverse pyramid structure to learn features at multiple granularities. To mitigate the impact of occlusion, we introduce the Similar Feature Filtering (SFF) attention module at the pixel level, using graph convolution to adaptively select occluded regions, thereby enhancing retrieval accuracy by filtering out irrelevant parts. Combining the reverse pyramid structure with the pixel-level attention module strengthens adaptability to complex scenes, guides multi-granularity feature learning, and effectively handles various occlusion scenarios. RPAG achieved Rank-1 accuracies of 96.2%, 93.2%, 88.7%, and 73.2% on the Market1501, DukeMTMC-ReID, MSMT17, and Occluded-Duke datasets, respectively.","PeriodicalId":509295,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"41 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reverse Pyramid Attention Guidance Network for Person Re-Identification\",\"authors\":\"Jiang Liu, Wei Bai, Yun Hui\",\"doi\":\"10.4018/ijcini.349982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Person re-identification aims to retrieve pedestrians with the same identity across different cameras. However, current methods increase attention to interfering regions when dealing with complex backgrounds and occlusion, especially in the presence of similar interfering features. To enhance the robustness of the model, we propose the Reverse Pyramid Attention Guidance (RPAG) network, using a reverse pyramid structure to learn features at multiple granularities. To mitigate the impact of occlusion, we introduce the Similar Feature Filtering (SFF) attention module at the pixel level, using graph convolution to adaptively select occluded regions, thereby enhancing retrieval accuracy by filtering out irrelevant parts. Combining the reverse pyramid structure with the pixel-level attention module strengthens adaptability to complex scenes, guides multi-granularity feature learning, and effectively handles various occlusion scenarios. RPAG achieved Rank-1 accuracies of 96.2%, 93.2%, 88.7%, and 73.2% on the Market1501, DukeMTMC-ReID, MSMT17, and Occluded-Duke datasets, respectively.\",\"PeriodicalId\":509295,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"41 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.349982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.349982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人员再识别的目的是在不同的摄像头下检索具有相同身份的行人。然而,当前的方法在处理复杂背景和遮挡时会增加对干扰区域的关注,尤其是在存在类似干扰特征的情况下。为了增强模型的鲁棒性,我们提出了反向金字塔注意力引导(RPAG)网络,利用反向金字塔结构学习多粒度特征。为了减轻闭塞的影响,我们在像素级引入了相似特征过滤(SFF)注意模块,利用图卷积自适应地选择闭塞区域,从而通过过滤掉无关部分来提高检索精度。将反向金字塔结构与像素级注意力模块相结合,可以增强对复杂场景的适应性,指导多粒度特征学习,并有效处理各种遮挡情况。RPAG在Market1501、DukeMTMC-ReID、MSMT17和Occluded-Duke数据集上的Rank-1准确率分别达到96.2%、93.2%、88.7%和73.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reverse Pyramid Attention Guidance Network for Person Re-Identification
Person re-identification aims to retrieve pedestrians with the same identity across different cameras. However, current methods increase attention to interfering regions when dealing with complex backgrounds and occlusion, especially in the presence of similar interfering features. To enhance the robustness of the model, we propose the Reverse Pyramid Attention Guidance (RPAG) network, using a reverse pyramid structure to learn features at multiple granularities. To mitigate the impact of occlusion, we introduce the Similar Feature Filtering (SFF) attention module at the pixel level, using graph convolution to adaptively select occluded regions, thereby enhancing retrieval accuracy by filtering out irrelevant parts. Combining the reverse pyramid structure with the pixel-level attention module strengthens adaptability to complex scenes, guides multi-granularity feature learning, and effectively handles various occlusion scenarios. RPAG achieved Rank-1 accuracies of 96.2%, 93.2%, 88.7%, and 73.2% on the Market1501, DukeMTMC-ReID, MSMT17, and Occluded-Duke datasets, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信